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 A B S T R A C T

Understanding free riding behavior—where bicyclists are unconstrained by other road users or traffic control 
measures—is essential for planning efficient and appealing bicycle traffic systems. Bicyclist behavior is 
shaped by a combination of environmental conditions and individual preferences. This study examines free 
riding behavior, and identifies correlations with individual characteristics and contextual features such as 
infrastructure design (slopes and curves) and wind speed. We introduce a method using instrumented bicycles 
in a semi-controlled experiment to collect data describing the speed, power output, and heart rate of commuting 
bicyclists. Participants in two study populations (28 in Sweden and 29 in Germany) ride their bicycles 
equipped with sensors along designated routes during off-peak demand periods, enabling comparative analysis 
of different trip features. Results highlight significant inter- and intrapersonal variations in speed and power 
output along a trip. Approximately 80 percent of the variation in free riding speed and power output over a trip, 
and over both populations of bicyclists, is explained by gender, individual preferences, topography, curvature, 
crossing intersections, and wind speeds. Headwinds and uphills generally reduce speeds but bicyclists increase 
power output to partially offset these effects. Downhills lead to high speed variation and distinct tactical 
behaviors, such as braking, coasting, and accelerating. These findings underscore the complexity of bicycling 
behavior and quantify how bicyclists adapt to varying features of the trip.
1. Introduction

The built environment plays a vital role in encouraging or deterring 
bicycling (Heinen et al., 2010; Pucher et al., 2010; Winters et al., 2010). 
Bicyclists engage with the built environment in multifaceted ways, 
and the broad diversity in their preferences and characteristics further 
shapes how they perceive and respond to their surroundings (Habib 
et al., 2024). Understanding the complexity of bicyclist behavior is 
crucial for planning efficient and safe transportation systems. For ex-
ample, designing bridges or parking garage entrances for bicyclists 
requires understanding acceptable gradients that balance efficiency and 
effort across diverse bicyclists. Assessing traffic safety at intersections 
could benefit from accurate estimations of bicyclist speeds on downhill 
approaches, as higher speeds elevate conflict risks. Estimating energy 
expenditure and travel time on bicycling routes also requires accurate 
modeling of bicyclist responses to the built environment. Such knowl-
edge is presently limited, hindering evidence-based planning for safe 
and attractive bicycle infrastructure.

∗ Correspondence to: Pauluskirchstr. 7, 42285 Wuppertal, Germany.
E-mail address: belikhov@uni-wuppertal.de (D. Belikhov).

Free riding behavior, where bicyclists are uninfluenced by other 
road users or traffic control measures, such as traffic lights, is key 
for understanding bicycle traffic dynamics. It reflects the properties of 
the bicycle, individual preferences, as well as physical capabilities and 
perceptions of effort, both of which are particularly relevant in human-
powered transportation (Twaddle and Grigoropoulos, 2016; Bigazzi and 
Lindsey, 2019; Raffler et al., 2019). As a result, free riding varies 
greatly. These individual characteristics, in combination with infras-
tructure design and weather conditions, ultimately shape the speed 
choices of bicyclists.

Speed is a fundamental aspect of bicycle traffic directly connected to 
efficiency and user experience. Pérez Castro et al. (2025) summarized 
findings from the literature, highlighting that speed varies with age, 
gender, bicycle type, and trip purpose, alongside contextual factors 
such as trip length, rush hour periods, type of infrastructure, and 
access to shower facilities. Bicyclists also employ specific tactics to 
navigate curves, with their strategies differing depending on traveling 
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speed (Vansteenkiste et al., 2014). Furthermore, the effects of topog-
raphy on speed have been explored in Parkin and Rotheram (2010), 
Flügel et al. (2019), Romanillos and Gutiérrez (2020) and Pérez Castro 
et al. (2023). While aerodynamic resistance is the largest force bicy-
clists encounter on flat terrain (Wilson et al., 2020), its impact on 
speed is not always significant when commuting. For instance, light 
tailwinds (up to 5.5 m/s) have been shown to increase the speed of 
bicyclists, whereas headwinds of the same magnitude had no notable 
effect (Yan et al., 2024). Moreover, Pérez Castro et al. (2025) reported 
no significant effects on speeds for winds up to ±3 m/s in video-based 
trajectory analyses combined with independent wind measurements 
near the bicycle path. Based on a large GPS-trajectory data set, Yan 
et al. (2024) explained speed variance in bicycle traffic across three 
levels: 30% is attributed to differences between bicyclists, 21% to 
variation between trips of the same bicyclist, and 49% to differences 
within individual trips. Similarly, Maurer et al. (2025) used a large 
GPS-trajectory dataset to reveal significant speed variations primarily 
influenced by gradients, BMI, age, and type of bicycle. Bicycle type, 
in particular, has been identified as having the greatest effect on free-
flow speed according to Yan et al. (2020). Despite extensive research on 
speed, many studies rely on data where it is unclear whether observed 
speeds are influenced by other road users, and to what extent those 
observations reflect preferred free riding speeds.

Bigazzi and Lindsey (2019) described speed choices as trade-offs 
between travel time, energy expenditure, and stability control. For 
instance, bicyclists tend to choose higher speeds when using electrically 
assisted bicycles, indicating that energy expenditure is pivotal in speed 
choice (Mohamed and Bigazzi, 2019). Power output may serve as a 
proxy metric for energy expenditure in bicycling, offering an objective 
measure that is often easier to quantify than energy use or subjec-
tive effort. Power output, as well as heart rate, is closely associated 
with oxygen uptake, and thus, enabling direct estimation of energy 
expenditure (Bigazzi and Figliozzi, 2015; Salier Eriksson et al., 2021). 
Previous studies have shown a significant reduction in power output 
with electric support (Matyja et al., 2022b), and that power output 
varies notably with gradients (Parkin and Rotheram, 2010; Kunert 
et al., 2021; Pérez Castro et al., 2023); e.g., steeper uphill gradients 
generally lead to higher power output. Despite its importance, research 
on power output in utilitarian trips remains limited, with most studies 
relying on speed-based estimates of power output, as in Parkin and 
Rotheram (2010), Mohamed and Bigazzi (2018) and Pérez Castro et al. 
(2023).

Quantification of bicycling behavior often relies on methods for 
video analysis and GPS tracking, which are often limited to capturing 
data associated with gradual environmental changes. Video analy-
sis captures interactions with other road users and infrastructure but 
is labor-intensive and location-specific. GPS tracking offers extensive 
floating data but lacks the granularity and accuracy to capture effort 
and bicycling dynamics or detailed environmental context (Lißner and 
Huber, 2021), such as traffic and infrastructure, requiring integration 
with other data sources. To address these limitations, instrumented 
bicycles (IBs) equipped with various sensors have been introduced as 
a comprehensive data collection method (Matyja et al., 2022a). IBs 
record detailed user-specific trajectory data of e.g., speed, cadence, 
heart rate, and power output, while also capturing the environmental 
context around bicyclists. A review by Gadsby and Watkins (2020) 
highlighted that sensor choices in IBs depend on study objectives, and 
stressed the need for standardized instrumentation for better compa-
rability and reproducibility. Other challenges include the complexity 
of sensor instrumentation, or designing a suitable experiment for data 
collection, as highlighted by Kircher et al. (2017).

Much research using IBs has focused on safety, using advanced, 
often custom-built, sensors that capture detailed data on conflicts and 
risky behavior. For instance, detailed dynamics on braking and lat-
eral movements have been documented (Dozza and Fernandez, 2014; 
Huertas-Leyva et al., 2018), drawing on relatively small samples of 
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bicyclists but extensive trip data per participant. Comfort zones during 
obstacle avoidance maneuvers have been modeled by Lee et al. (2020), 
while mental workload in urban traffic has been investigated using 
simpler setups focused on heart rate measurements, as by Pejhan et al. 
(2021). These studies frequently face data synchronization and cost 
challenges, as highlighted by Duran Bernardes and Ozbay (2023), who 
addressed these issues by integrating multiple sensors into a single 
data acquisition system. Extensive data collection and processing may 
also limit the number of participants in a study. Additionally, the 
limited portability of advanced instrumentation often translates to 
using a single IB for all participants, potentially influencing naturalistic 
behavior.

Other research using IBs has focused on performance, primarily 
examining efficiency and comfort. For example, delays at intersections 
with motorized traffic were analyzed concerning priority rules and 
bicyclist characteristics, showing that delays varied across bicyclist 
types (Kircher et al., 2018); faster bicyclists faced greater delays at 
mandatory stops, while comfort-oriented bicyclists were most delayed 
at mixed-traffic roundabouts. Matos et al. (2021) estimated travel times 
and energy expenditure for various bicycling routes using a single IB 
equipped with GPS and a heart rate sensor. Systematic changes in 
pedaling were reported as an adaptive response to changes in eleva-
tion in Kunert et al. (2021). Gradients and surface quality have been 
observed to affect speed and perceived comfort, with effects varying 
by experience level according to Feizi et al. (2020). Additionally, 
Zhu and Zhu (2019) found road surface, together with lane width 
and separation from pedestrians, as a significant factor influencing 
comfort. Using a range of methods, such as crowd-sourced GPS data, 
accelerometers, or smartphone-mounted sensors, other studies have 
also demonstrated that smoother surfaces improve travel speed and 
comfort, and yield substantial societal and user-level benefits through 
better infrastructure maintenance and planning (Argyros et al., 2024; 
Ahmed et al., 2023; Cafiso et al., 2022). Lastly, aggregated analysis 
by Shoman et al. (2023) showed significant speed and power output 
reductions on snowy surfaces compared to dry conditions. Performance 
studies highlight the impact of infrastructure on bicycling behavior, 
with effects varying notably across bicyclists. However, performance 
studies have rarely measured power output in utilitarian trips, aside 
from aggregated results in Shoman et al. (2023), and seldom allow 
participants to use their bicycles, with Kircher et al. (2018) being a 
notable exception.

While IB studies have provided valuable insights into bicycle traf-
fic performance, comprehensive datasets capturing diverse free riding 
behavior under various contexts are still lacking. By collecting detailed 
trajectory data on free riding behavior, including power output mea-
surements, and allowing participants to use their own (non-electric) 
bicycles, the objective of this study is to characterize the speed and 
power output across two populations of commuting bicyclists. Addi-
tionally, we investigate heart rates as a supplementary measure to 
gain further insights into bicyclist behavior. We describe how these 
behaviors vary among bicyclists and identify correlations with demo-
graphics and contextual features, such as infrastructure design (namely 
horizontal and vertical alignment) and wind.

Understanding the speed dynamics, physical exertion, and related 
tactical behaviors in bicycle traffic can inform better traffic and in-
frastructure planning, model development for the simulation of bicycle 
traffic, and optimization techniques for e-bike motor assistance that 
guarantee adequate support in difficult terrain. Moreover, detailed 
characterization of power output in bicycle traffic can provide the basis 
for incorporating energy expenditure into traffic modeling and inform 
route and mode choice decisions.

2. Methods

We describe the methods used in this study, divided into four 
subsections. First, we outline the experimental design, including the 
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recruitment process, bicycle instrumentation, and instructions to par-
ticipants. Second, we introduce data acquisition and processing proce-
dures, followed by the methods used to characterize behavior, and a 
description of the study locations.

2.1. Experimental design

To measure free riding behavior, we recruit people to participate 
in a semi-controlled experiment using IBs. We adopt a semi-controlled 
experimental design to investigate operational and tactical behavior. 
The experiment encompasses six stages:
Recruitment of participants. We aim to collect data from frequent 
commuters who ride conventional bicycles at least 2–4 times per week. 
No e-bikes are included in this study as we focus on behavior with-
out electric support. We recruit participants through social media, 
community boards, and flyers. During this stage, we collect back-
ground information on potential participants, such as age, gender, and 
bicycling experience and habits.
Documentation of individual characteristics. We register the char-
acteristics of the participants and their bicycles that are relevant to 
analyzing bicycling dynamics and behavior. Individual characteristics 
include the total weight of the bicycle and the participant, including 
accessories worn while bicycling (bags, helmet, etc.), the type of bicycle 
(e.g., commuter, road, mountain, etc.), mechanical properties of the 
bicycle (type of brakes and gearing system), and bicycle dimensions 
(length, width, and tire size).
Instrumentation of bicycle. We install various sensors on the partic-
ipants and their bicycles to collect information about their behavior 
and the environment. These devices do not add significant weight to 
the bicycle and are unobtrusive. Complete instrumentation of a bicycle 
takes approximately 10 min. A bicycle is provided if the participant’s 
bicycle cannot be instrumented (e.g., the original pedals cannot be 
removed); in such situations, participants choose from various bicycles, 
featuring distinct frame designs (diamond or step-through) and wheel 
sizes, to find the most suitable option for their comfort.
Data acquisition. We collect trajectory data from each participant 
during one trip along a designated route. Participants are instructed 
to ride at their preferred pace as they would during a typical commut-
ing trip; the research team neither impose restrictions, nor encourage 
specific behaviors, and avoid interaction with participants during the 
trip. To facilitate the identification of free riding, participants are fur-
ther instructed to communicate whenever they feel another road user 
constrains their speed. We schedule rides outside peak hours, between 
9:00 and 16:00, to reduce interactions with other road users. Routes 
are chosen to ensure that participants experience a range of gradients, 
curvatures, and wind exposures. Furthermore, we select routes that are 
easy to follow; temporary signs (see Fig.  2) are placed along the route to 
guide participants. Lastly, we document weather and traffic conditions 
for each trip.
Post-ride. After completing the trip, participants provide feedback on 
prior familiarity with the route, indicating if it is frequently used or 
entirely unfamiliar to them, and whether they experience any issues 
with the equipment or following the route, including whether these is-
sues influence their behavior. The purpose of collecting this contextual 
data is to control for potential impacts of the experimental setup on the 
observed behavior.

2.2. Data acquisition and processing

We use commercially available devices to equip the bicycles. The 
main component of our data acquisition setup is a bicycle computer 
with onboard memory for data logging, gathering data at a frequency 
3 
Fig. 1. Overview of data acquisition and processing.

of 1 Hz. A key criterion in sensor selection is the ease of installa-
tion, ensuring that the equipment can be quickly and easily trans-
ferred between bicycles. Table  1 summarizes the components used 
in this study, along with their manufacturers, primary function, and 
installation location on the bicycle.

The bicycle instrumentation includes sensors for measuring bicyclist 
behavior, such as speed, cadence, power output, and heart rate. Power 
measurements indicate pedaling activity when positive, while zero 
readings may indicate coasting or braking. Braking with coaster brakes 
(if available) does not produce false pedaling measurements, as forward 
pedal rotation is required for positive power readings. To gather contex-
tual information, we complement the instrumentation with video/audio 
recorders, an event button, and an anemometer. While video record-
ings are useful for capturing the environment around the participants, 
audio recordings and the event button allow participants to self-report 
instances of constrained behavior. The anemometer collects wind speed 
data throughout the trip; Kordi et al. (2022) and Millour et al. (2022) 
showed that wind speed, as measured by Notio, can be used to estimate 
aerodynamic drag and power output accurately. Although both the 
bicycle computer and the anemometer track GPS coordinates indepen-
dently, only the location data from the bicycle computer is used in the 
analysis, as it consistently tracks more accurate and stable positioning.

The data acquisition and processing workflow is summarized in 
Fig.  1. The process starts with automatically logging and synchronizing 
the sensor data (including wind speed data) in the bicycle computer, 
establishing a centralized repository for information with associated 
GPS coordinates. Video/audio recordings and self-reported events are 
time-based and paired with the sensor data after collection. Infrastruc-
ture features are sourced from ground elevation models with a 1-m 
resolution (Lantmäteriet, 2021; Geschäftsstelle IMA GDI.NRW, 2024). 
The Point Sampling Tool (Jurgiel, 2022) is a GIS utility that extracts 
attribute values (such as elevation data) from a raster dataset for each 
point in a vector dataset (such as our trajectory point measurements). 
GPS coordinates often align well with infrastructure, typically within 
2 m and mostly parallel to the route, allowing a simple spatial join 
using the nearest point algorithm (GeoPandas Development Team, 
2021) to synchronize sensor data to the route. When alignment is poor, 
we manually adjust trajectory coordinates before proceeding with the 
map-matching.

For each participant, we store a detailed logbook that includes 
their personal and bicycle characteristics, sensor data (joined with 
video/audio recordings and infrastructure features), post-trip insights, 
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Table 1
Hardware components.
 Component Function Manufacturer and model Installation location 
 Bicycle computer Data logger/GPS tracker Garmin Edge 1040 Handlebar  
 Power-meter pedals Measurement Garmin Rally XC200/Favero Assioma Pedals  
 Speed sensor Measurement Garmin Bundle2 Wheel hub  
 Cadence sensor Measurement Garmin Bundle2 Crank arm  
 Heart-rate monitor Measurement Polar Veridity Sense Arm of participant  
 Event-button Measurement In-house manufactured Handlebar  
 Anemometer Measurement/GPS tracker Notio Handlebar  
 Microphone Audio recorder DJI Mic 2 Chest of participant 
 Video camera Video recorder Sony FDR-X3000/GoPro Hero 10 Handlebar  
Fig. 2. Travel routes for experiment in Linköping and Wuppertal. Note: Altitude relative to the start of the route.
and contextual information on weather and traffic conditions during 
the experiment. In this paper, we analyze records from participants who 
report no impact on their riding behavior from the instrumentation or 
the borrowed bicycle (if relevant).

To reduce measurement noise in speed and power output, we apply 
a rolling window averaging algorithm with a window size of three 
observations. Constrained behavior, i.e., influenced by other road users 
or traffic signals, is identified through video analysis, using partici-
pants’ self-reported events to locate relevant segments. We annotate 
events such as overtaking, potential following, crossings with other 
road users, and stopping due to red signals at intersections. We define 
the start of each constrained behavior at the first noticeable drop or 
irregularity in speed associated with the event, and the end when speed 
returns to pre-constraint levels, adding a buffer (ranging from 5 to 
30 s) to mitigate lingering effects; buffer length depends both on the 
speed and infrastructure, for instance, effects may be prolonged on 
downhill sections. Constrained behavior is filtered out from the analy-
sis, ensuring that only data representing free riding behavior are used 
for further examination. Additionally, instances in the trajectory data 
where participants report being significantly confused while following 
the route are identified and excluded from the analysis.

2.3. Data analysis

We define bicycling preferences in terms of speed and power output. 
Preferred (desired) speed is an important metric for understanding 
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the delays bicyclists face along their routes, whether caused by other 
road users or the infrastructure. We estimate the preferred speeds as 
the observed speeds at straight, flat, low-wind segments when the 
participants are free from the influence of other road users or traffic 
signals. The preferred power output corresponds to the observed power 
when traveling at the preferred speed. Thereby, we observe preferred 
speed and power on straight segments with gradients up to ±1%, 
excluding measurements when wind speeds exceed 3 m/s in magnitude. 
To account for the physiological response lag in heart rate data, we 
find the lag that maximizes the correlation between the heart rate and 
power output.

We use Spearman’s rank correlation to identify relationships be-
tween bicyclist characteristics and preferences. Moreover, we apply a 
two-level mixed-effects modeling framework to analyze the relationship 
between behavior (speed and power output) and contextual factors: 
demographics, infrastructure design, and wind. This framework is well-
suited to our trajectory data, which consists of several observations 
over time for each participant. The model accounts for the hierarchical 
structure of the data, with observations along the trajectory at level 
1 and bicyclists at level 2, modeling both population-level effects and 
individual-specific variations. Mixed-effects models account for both 
fixed effects, which influence all participants (e.g., environmental fac-
tors), and random effects, which capture individual-specific variability 
in responses to predictors. The general form of the mixed-effects models 
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can be expressed as: 

𝑦𝑖𝑗 = 𝛽0 +
𝑝
∑

𝑘=1
𝛽𝑘𝑥𝑖𝑗𝑘 + 𝑢0𝑗 +

𝑞
∑

𝑘=1
𝑢𝑘𝑗𝑥𝑖𝑗𝑘 + 𝜖𝑖𝑗 , (1)

where 𝑦𝑖𝑗 is the dependent variable (speed or power output) for obser-
vation 𝑖 (level 1) in bicyclist 𝑗 (level 2), 𝛽0 is the fixed intercept, 𝛽𝑘
are the fixed-effect coefficients for predictors 𝑥𝑖𝑗𝑘 (e.g., gradient, wind 
speed, etc.), 𝑢0𝑗 are the individual intercepts, capturing the deviations 
specific to bicyclist 𝑗, 𝑢𝑘𝑗 are the individual responses for predictors 
𝑥𝑖𝑗𝑘, allowing their effects to vary among bicyclists, and 𝜖𝑖𝑗 is the 
residual error term, assumed to follow  (0, 𝜎2). We fit linear mixed-
effects models using the ‘‘MixedLM’’ function from the ‘‘statsmodels’’ 
package in Python (Skipper and Josef, 2010).

2.4. Case study

The experiment is conducted in two locations: Linköping, Sweden, 
and Wuppertal, Germany, differing mainly in their topography and 
infrastructure design Linköping is relatively flat with bicycle paths 
separated from motorized traffic, while Wuppertal has steep hills and 
lacks dedicated bicycle infrastructure.

In Linköping, participants are selected primarily based on bicycling 
frequency for commuting (at least 2–4 times per week, all year round), 
and self-perceived commuting style, categorized as fast, moderate, or 
relaxed commuters. The purpose of this criteria is to ensure an even dis-
tribution across commuting styles. In Wuppertal, we select a population 
of frequent bicycle commuters who are fit enough to handle the difficult 
topography of the route. Therefore, potential participants are asked 
to assess their fitness level from non-athletic to athletic. Additional 
criteria in both locations include being between 18 and 65 years old 
and being able to bring their bicycle. A total of 28 and 29 participants 
join the experiments in Linköping and Wuppertal, respectively. A 300 
SEK incentive is provided to promote participation in Linköping, while 
no incentives are provided in Wuppertal.

In both experiments, we use the same models of bicycle computers 
and sensors for speed, cadence, and heart rate, along with similar 
models for power-meter pedals and video recording. The anemometer 
is implemented only in Linköping, since Wuppertal lies in a wind-
protected valley where the strong effects of steep road gradients greatly 
outweigh the effects of wind speed on bicycling behavior. Moreover, 
the identification of constrained behavior is supported by the event 
button and video in Linköping, and by video and audio in Wuppertal.

The Linköping route is 5 km long, entirely separated from motorized 
traffic (see Fig.  2), and following a semi-circuit loop formed by two 
distinct sections: one traveled twice (back and forth); the other traveled 
only once. The route features light to moderate hills (gradients up 
to ±6%), seven flat segments, and intersects with bicycle traffic at 
eight locations, and with motorized traffic at four unsignalized in-
tersections (where bicycles have priority). In contrast, the Wuppertal 
route is 3.2 km long and runs in mixed traffic (no dedicated bicycle 
lanes), following a closed loop around the university campus. The 
route features moderate to steep hills (gradients up to ±13%), including 
three flat segments, one steep ascent, one prolonged and steep climb, 
and one continuous downhill section. Additionally, the route includes 
three signalized intersections (one of which is passed twice) and low 
motorized traffic flows. The busiest street along the Wuppertal route 
carries approximately 6000 vehicles per day, with approximately 600 
vehicles/hour during peak demand periods. Since data collection occurs 
during off-peak periods, motorized traffic volumes are low, and interac-
tions with motor vehicles are infrequent, allowing bicyclists to use the 
available space with minimal restrictions. The surface quality on both 
routes is generally acceptable and consistent; this assessment is based 
on visual inspection of video recordings and participant feedback.

Data collection takes place during autumn 2023 (October/
November) in Linköping, and during summer 2023 (June) in Wupper-
tal. In Linköping, temperatures range from 0 to 12.5 degrees Celsius, 
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and wind speeds (recorded by anemometer) range between ±6 m∕s in 
the travel direction; negative values indicate tailwinds, positive values 
headwinds. In Wuppertal, temperatures range from 18 to 30 degrees 
Celsius (Deutscher Wetterdienst, 2024), and wind speeds up to 3 m/s 
in magnitude are recorded at the weather station four kilometers from 
the experiment site. Since an anemometer is not used to measure local 
wind speeds in Wuppertal, weather station data may differ from site 
conditions due to distance and wind obstructions. However, based on 
experiment reports in Wuppertal, wind sensation is negligible on site. 
The seasonal difference between the two locations results in variations 
in the clothing worn by participants, affecting their total weight and 
aerodynamic resistance. No intense sunlight is documented during the 
experiments, and no participants report discomfort from temperature 
or glare.

3. Results

Data analysis of the two populations (Linköping and Wuppertal) is 
presented in this section. First, we provide an overview of the char-
acteristics of the participants. Next, we examine the influence of two 
infrastructure design features—vertical and horizontal alignment—and 
wind speeds on speed, power output, and heart rate. Finally, we analyze 
bicycling preferences (speed and power output) and their relationships 
with infrastructure design and wind.

3.1. Characteristics of participants

In Fig.  3, we present the distributions of age, gender, and type of 
bicycle. The age distribution reveals a younger population in Wuppertal 
compared to Linköping, which can be attributed to the prerequisite of 
physical fitness in recruitment. In contrast, Linköping has participants 
from a wide range of age groups. The majority of participants are men 
in both populations, with women making up approximately 21% of the 
combined samples. While we find no specific studies that detail the 
share of women in bicycle traffic in Germany or Sweden, international 
surveys showed that in areas with bicycling mode shares below 7%, 
women cycle less than men (Goel et al., 2022). The total weights 
of participants, including their bicycles and any additional gear, are 
relatively similar in both locations, with a mean of 101.5 kg (std. 
deviation: 12.9 kg) in Linköping and 98.2 kg (std. deviation: 11 kg) 
in Wuppertal. Minor weight differences may reflect variations in age 
and clothing between the two populations; the latter due to seasonal 
differences in data collection. In Linköping, participants predominantly 
use city/commuter bicycles, while in Wuppertal, the distribution of 
bicycle types is more diverse, including mountain bicycles (MTBs) and 
race/road bicycles; because of restrictions in sensor installation, nine 
participants use a bicycle other than their own.

The selected route in Linköping is not part of the usual commuting 
route for 85% of the participants. However, 71% are familiar with the 
area where the experiment takes place. Due to the experimental design, 
four participants in Linköping report being confused when turning at 
one of the intersections; these specific trajectory segments are excluded 
from the analysis. In Wuppertal, all participants are familiar with 
the selected route, as the participants are mainly associated with the 
university campus. Self-perceptions of commuting style in Linköping 
are split between fast (57.1%) and moderate (42.9%) commuters, with 
no participants identifying as relaxed commuters. In Wuppertal, self-
perceptions indicate a population with relatively good physical fitness, 
with 51.7% identifying as athletic, 34.5% as average, and 13.8% as 
unathletic.

We use the average number of interactions per kilometer as a 
proxy for the surrounding traffic, since precise traffic flow data are 
unavailable. Interactions with road users or traffic signals occur, on 
average, every 2 km in Linköping, and every 1.5 km in Wuppertal. 
The filtering process for constrained behavior excludes 3.7% and 17.2% 
of all time-based trajectory observations (i.e., data points recorded per 
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Fig. 3. Distributions of (a) age, (b) gender, and (c) type of bicycle of participants.
second) in Linköping and Wuppertal, respectively. The higher exclusion 
rate in Wuppertal reflects data removal at signalized intersections, 
where some bicyclists wait at red lights. In terms of distance traveled 
along the route, the filtering corresponds to 3.6% of the total trajectory 
length in Linköping and 8.9% in Wuppertal.

3.2. Impact of infrastructure design

Vertical alignment . The vertical alignment (gradients) has a signif-
icant influence on bicyclist behavior. Fig.  4 illustrates the impact of 
longitudinal gradients on speed, power output, and heart rate. Speeds 
generally decrease with increasing gradients, from negative (downhill) 
to positive (uphill) gradients. The distribution of speeds widens signif-
icantly on the steepest downhills. The highest speeds observed may 
result from a combination of local steep gradients and the distance 
traveled since the start of the descent.

On uphills, power output increases as gradients increase, eventually 
reaching a plateau. This suggests that participants are approaching the 
upper limit of their ability or desire to generate additional power. 
Heart rate data also displays an upward trend with increasing uphill 
gradients, reflecting the greater physical effort during uphill bicycling. 
In contrast, power output approaches zero as the downhills get steeper, 
indicating evident coasting or braking on steeper descents. Heart rate 
does not seem to be influenced by downhill gradients.

Perceptions of effort may lead to different tactics to manage physical 
exhaustion. Therefore, we analyze the power output trajectories of 
participants in two situations in which tactical behavior may occur: 
(1) transitioning from a downhill to an uphill; and (2) based on the 
length of the uphill segment, i.e., examining whether behavior changes 
during a long ascent. Fig.  5 illustrates data from Linköping, showing 
a transition from downhill to uphill. This route segment is familiar 
to all participants, as they have already traveled it once, although in 
the opposite direction. Participants also have good visibility of the 
upcoming uphill. In this situation, the power output data suggest two 
distinct tactics for coping with the uphill. Tactic 1 (in blue) depicts a 
sustained low or zero power output during the downhill, which then 
increases during the uphill. In contrast, tactic 2 (red) exhibits a notable 
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surge in power output before the uphill. While tactic 1 reflects coasting 
behavior on the downhill, tactic 2 increases power output to boost 
speed. With the downhill assistance, participants who take tactic 2 have 
a smoother increase in power when transitioning uphill. The distinct 
tactics are also evident in similar downhill–uphill transitions with good 
visibility along the route or where participants travel twice.

In Wuppertal, the route also includes a transition from downhill 
to uphill, but with the distinction that these sections are longer and 
steeper. Fig.  6 shows the progression of power output on the uphill 
section of this transition. Overall, the power output profiles indicate 
low values at the beginning of uphill, followed by a peak within the first 
100 m due to the rapid increase in the gradient of the climb. After this 
peak, however, the behavior diverges into two distinct types (tactics). 
Tactic 1 (blue) represents participants with generally low power output 
who maintain a relatively constant power output towards the end of the 
climb. In contrast, tactic 2 (red) represents participants whose power 
output varies in response to the gradient throughout the climb.

Horizontal alignment . In Linköping, where the lateral available space 
is more restrictive, the results demonstrate a clear relationship between 
curvature and speed (see Fig.  7). Speeds decrease with increasing curva-
ture, with sharp curves reducing speed, in average, by approximately 
35% compared to straight segments. However, neither power output 
nor heart rate shows a clear trend in these conditions.

In Wuppertal, participants ride on street roads with large-radius 
curves, allowing enough space for maneuvering results in minor speed 
reductions through the curves.

3.3. Impact of wind

Analysis of wind speed effects is only conducted for Linköping, 
where we have detailed wind speed data. In Fig.  8, we show that 
strong headwinds result in a decrease in speed while also leading to 
an increase in power output. Heart rate shows a slight inclination to 
rise as headwind intensity increases, as indicated by the median.
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Fig. 4. Impact of longitudinal gradients on (a) speed, (b) power output, and (c) heart 
rate. Note: the analysis includes observations from straight segments with low wind 
speeds.

3.4. Bicycling preferences

We identify seven segments in Linköping and three in Wuppertal 
where we estimate preferred (desired) speeds and power outputs, as 
defined in Section 2.3.

In Fig.  9, we show the distribution of preferred speeds and power 
outputs of participants, averaged over all selected segments. A
Kolmogorov–Smirnov (KS) test, with a 95% confidence level, confirms 
that the distributions of preferred speeds are statistically similar be-
tween Linköping and Wuppertal (p-value = 0.110 and KS-statistic =
0.302). However, the KS test for power outputs indicates a significant 
difference between the two locations (p-value = 0.017 and KS-statistic 
= 0.397). Even though preferred speeds are similar in both locations, 
these speeds do not necessarily correspond to the same power output 
levels (also evident in Fig.  4(b) for each gradient). The difference in 
power outputs is likely due to significant differences in wind resistance, 
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as participants in Linköping face stronger headwinds and wear bulkier 
clothing (further increasing their aerodynamic resistance), ultimately 
requiring a higher propulsive force to maintain the desired speed.

In Fig.  10, we present the distribution of average preferred speeds 
of participants for each segment. Note that the analyzed segments are 
not consecutive, and the sample sizes are reduced since we require 
measurements in all selected segments. In both locations, there is 
noticeable variability between the speed and power output distribu-
tions throughout the trip. In Linköping, these differences are likely 
influenced by the presence of hills between segments, which have a 
lasting effect on speed and power output. For example, speeds at the 
fifth segment (km 3.7) are potentially influenced by a preceding light 
but long downhill. In Wuppertal, speeds and power outputs appear to 
decrease over time but may also be influenced by preceding conditions. 
The last speed measurement is taken on a segment that follows a long 
and steep uphill.

A power curve represents the maximum power output a bicyclist 
sustains over time. In Fig.  11, the observed power curves of participants 
range from 2 to 8 W/kg over 1 s. While power curves are commonly em-
ployed to determine the peak abilities of sports bicyclists, the observed 
power output in this study reflects the maximum bicyclists are willing 
to exert during typical commuting trips. Moreover, the power curves 
stay relatively stable over 5 min for both locations. Although the power 
curves of the two populations overlap substantially, the median power 
output in Wuppertal is notably higher than in Linköping. The difference 
is expected due to the topography in Wuppertal and the higher phys-
ical fitness of its participants. Despite the overlap, differences in the 
distribution of the power curves underscore variations in performance 
preferences (and capabilities) between the two populations.

The matrix presented in Fig.  12 shows Spearman’s rank correla-
tion coefficients (𝜌) between individual characteristics, and bicycling 
preferences and tactics for both locations. Male participants generally 
ride faster than female participants (𝜌 = 0.52), regardless of horizontal 
and vertical alignment, also generating slightly more power output 
(𝜌 = 0.43). No significant correlation is found between age and speed. 
However, older participants may identify with a moderate commuting 
style compared to younger participants, indicated by lower heart rate 
measurements with age (𝜌 = −0.22), suggesting a decrease in physical 
exertion. Total weight is correlated only with power output (𝜌 = 0.44).

Men are also more inclined to adopt a boosting-speed tactic to cope 
with uphills (𝜌 = 0.5); an analogous pattern is noted among race-bike 
users. Bicyclists using this tactic also exhibit positive correlations with 
both speed (𝜌 = 0.39) and power output (𝜌 = 0.32). On long uphills, no 
significant correlation with gender is observed, but a correlation with 
age (𝜌 = −0.49) suggests that younger participants are more likely to 
adopt an adaptive tactic throughout the climb, possibly reflecting their 
higher physical fitness. The gradient-adaptive profile also correlates 
with weight (𝜌 = 0.49), likely reflecting increased power capabilities 
associated with higher body mass. Findings are largely consistent be-
tween Linköping and Wuppertal, except for the correlation between age 
and power output. Age is negatively correlated with power output in 
Linköping but the opposite in Wuppertal, likely due to the narrower 
age distribution in the Wuppertal population.

3.5. Mixed-effects modeling for bicycling behavior

Mixed-effects models for speed and power output are developed 
for three datasets: Linköping, Wuppertal, and a combined dataset. The 
results of the six models are , summarized in Table  2.

The intercepts represent the baseline bicycling behavior when all 
predictors are zero. Baseline speeds are slightly higher in Linköping 
(5.50 m/s) than in Wuppertal (5.27 m/s). The baseline power output 
is approximately 40 W higher in Linköping. The random intercepts 
reveal the variability among bicyclists (illustrated in Fig.  13), with a 
standard deviation going from 0.710 m/s (Wuppertal) to 0.749 m/s 
(Linköping) for speed and from 29.798 W (Wuppertal) to 59.343 W 
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Fig. 5. Tactical behavior on uphills triggered by the transition from prior downhill (Linköping). Note: Position zero indicates the start of the downhill, defined as a gradient 
steeper than −2 percent. The thick line represents the average power output of individual (thinner) trajectories.  (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
Fig. 6. Tactical behavior on uphills triggered by the length of uphill (Wuppertal). The thick line represents the average power output of individual (thinner) trajectories.  (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Impact of horizontal curvature on (a) speed, (b) power output, and (c) heart rate. Note: curves are categorized by their rate of directional change per distance [m-1], with 
speed, power, and heart rate observations averaged for each curve. The analysis includes observations from flat segments with low wind speeds.
(Linköping) for power output. The Intraclass Correlation Coefficient 
(ICC) indicates that 32.2% of the total variance in speed (Wupper-
tal) and 56% (Linköping) may be explained by differences among 
bicyclists. In contrast, individual differences are attributable to 22.5% 
(Wuppertal) and 51.4% (Linköping) for power output. The marginal 
and conditional R2 values reflect lower proportions, with marginal R2

capturing the variance explained by fixed effects alone and conditional 
R2 including both fixed and random effects. Male participants exhibit 
8 
higher speeds and power outputs than females across all models. On 
average, using the combined dataset, males ride 1.074 m/s faster and 
generate 40.385 W greater power output than females.

Uphill gradients reduce speed (−0.191 to −0.073 m∕s per 1% gradi-
ent) while increasing power output (+25.016 to +28.876 W per 1% gra-
dient), whereas downhill gradients increase speed (+0.053 to +0.425m∕s
per 1% gradient) but decrease power output (−21.515 to −13.383 W 
per 1% gradient). Notably, the coefficients for uphill and downhill 
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Fig. 8. Impact of wind speed on (a) speed, (b) power output, and (c) heart rate. Note: the analysis includes observations from flat and straight segments.
Fig. 9. Distribution of preferred (a) speed and (b) power output. Note: The sample size is 28 and 29 participants for Linköping and Wuppertal, respectively (kernel density 
estimate).
Fig. 10. Distributions of preferred (a) speed and (b) power output over the trip. Note: The sample size is 25 and 20 participants for Linköping and Wuppertal, respectively.
gradients differ significantly in magnitude, indicating their impacts on 
speed and power output are not equivalent for the same gradient. 
The random slopes for gradient reveal the variability in how bicyclists 
respond to these factors (illustrated in Fig.  13). Elevation gain and loss 
refer to the absolute change in altitude from the start of the uphill 
or the downhill. Elevation gain decreases speed (−0.18 to −0.038 m∕s
9 
per 1 m) and has mixed effects on power output, slightly increasing 
it in Linköping (+0.554 W per 1 m) but reducing it in Wuppertal 
(−1.197 W per 1 m). The mixed effects on power output may arise from 
shorter uphills in Linköping, where participants may be more willing to 
exert additional power, compared to the longer and more demanding 
uphills in Wuppertal. Elevation loss, on the other hand, increases speed 
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Table 2
Model results.
 Speed [m/s] Power output [W]
 1: Linköping 2: Wuppertal 3: Combined 4: Linköping 5: Wuppertal 6: Combined
 Fixed effects: Coefficients (𝛽0 , 𝛽1𝑥) (Mean over the population)
 Intercept, 𝛽0
[m/s or W]

5.5
[5.021, 5.979]

5.27
[4.79, 5.749]

5.226
[4.779, 5.673]

138.727
[101.26, 176.193]

102.814
[80.979, 124.648]

110.692
[86.148, 135.236]

 

  
 Gender [m/s or W]
{0: Female, 1: Male}

0.759
[0.239, 1.279]

1.074
[0.543, 1.605]

1.075
[0.657, 1.494]

44.277
[3.878, 84.676]

35.128
[10.26, 59.996]

40.385
[17.223, 63.547]

 

  
 Uphill gradient
[m/s or W per 1%]

−0.073
[−0.107, −0.038]

−0.191
[−0.213, −0.169]

−0.177 
[−0.236, −0.117]

28.876
[25.099, 32.652]

25.016
[22.289, 27.743]

27.228
[24.874, 29.582]

 

  
 Downhill gradient 
[m/s or W per 1%]

0.053
[0.018, 0.088]

0.425
[0.357, 0.492]

0.354
[0.306, 0.403]

−21.515
[−25.152, −17.879]

−13.383
[−15.126, −11.641]

−20.088
[−22.874, −17.303]

 

  
 Is uphill ahead?
[m/s or W] {1:True}

0.214
[0.183, 0.245]

– 0.248
[0.211, 0.285]

3.687
[0.976, 6.399]

– 1.349
[−1.347, 4.046]

 

  
 Elevation gain 
[1/s or W/m]

−0.18
[−0.187, −0.173]

−0.038
[−0.04, −0.037]

−0.04 
[−0.041, −0.039]

0.554
[−0.045, 1.154]

−1.197
[−1.291, −1.102]

−1.114
[−1.212, −1.016]

 

  
 Elevation loss 
[1/s or W/m]

0.311
[0.3, 0.322]

0.044
[0.042, 0.046]

0.042
[0.04, 0.043]

−10.852
[−11.802, −9.902]

−0.236
[−0.344, −0.128]

−0.373
[−0.485, −0.261]

 

  
 Curvature 
[m^2/s or Wm/s]

−6.042
[−6.579, −5.505]

– −6.194 
[−6.762, −5.626]

−393.31
[−439.935, 
−346.685]

– −221.35
[−262.314, 
−180.386]

 

  
 Intersection [m/s or W] −0.411

[−0.437, −0.384]
−0.231
[−0.279, −0.183]

−0.242 
[−0.267, −0.217]

−24.414
[−26.693, −22.136]

−16.96
[−19.597, −14.323]

−21.816
[−23.627, −20.004]

 

  
 Headwind [− or W s/m] −0.253

[−0.332, −0.174]
– −0.211 

[−0.224, −0.197]
15.665
[9.876, 21.453]

– 12.005
[11.04, 12.971]

 

  
 Tailwind [−, W s/m] 0.303

[0.222, 0.385]
– 0.394

[0.379, 0.409]
−12.987
[−17.28, −8.695]

– −9.801
[−10.876, −8.726]

 

  
 Location [m/s or W] 
{0: Linköping, 1: 
Wuppertal}

– – 0.034*
[−0.407, 0.474]

– – 18.268*
[−8.737, 45.274]

 

 Random effects: intercepts and responses (Std. deviation) (Std. deviation over the population)
 Bicyclist, 𝑢0𝑗 [m/s or W] 0.749 0.710 0.687 59.343 29.798 53.983  
 Uphill gradient 
[m/s or W per 1%]

0.090 0.058 0.229 9.969 7.427 8.940  

 Downhill gradient 
[m/s or W per 1%]

0.089 0.183 0.185 9.449 4.486 10.540  

 Headwind [−or W s/m] 0.205 – – 14.682 – –  
 Tailwind [−or W s/m] 0.211 – – 10.747 – –  
 Model fit
 R2 Marginal 0.402 0.786 0.678 0.391 0.725 0.58  
 R2 Conditional 0.761 0.858 0.827 0.724 0.791 0.782  
 ICC 0.56 0.322 0.422 0.514 0.225 0.464  
1: 𝛽𝑥 show changes in one unit speed [m/s] or power output [W] per unit change in predictors, with [ ] indicating 95% confidence intervals.
* p-values > 0.05 (not significant).
Fig. 11. Maximal power output sustained over time, normalized by total weight.
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(+0.044 m∕s to +0.311 m∕s per 1 m) but decreases power output (−0.236
W to −10.852 W per 1 m), reflecting reduced physical effort during 
descents. Including elevation gain and elevation loss in the model cap-
tures characteristics of hills beyond just the local gradient, such as their 
length and overall profile. The variable ‘‘is uphill ahead’’ is designed to 
capture downhill-to-uphill transitions along the route by marking all 
downhills immediately followed by an uphill, allowing for comparisons 
with downhills that transition into flat sections. It represents downhills 
where bicyclists may increase their power output in anticipation of an 
upcoming uphill. This variable shows a statistically significant increase 
in power output (+3.687 W) in Linköping, along with a consequent sig-
nificant increase in speed, reflecting the anticipatory tactic by bicyclists 
when approaching uphills. Additionally, curvature reduces both speed 
and power output. Curvature is not included in the Wuppertal models, 
as the radii are too large to generate a noticeable effect. The presence 
of intersections lowers both speed and power output.
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Fig. 12. Spearman’s rank correlation (𝜌) between individual characteristics, perceptions of effort, tactics, and bicycling preferences.
In Linköping, headwinds reduce speed by −0.253 and increase power 
output by +15.665 W s/m, while tailwinds increase speed by +0.303 and 
reduce power output by −12.987 W s/m. The coefficients for headwinds 
and tailwinds are similar in magnitude, suggesting comparable changes 
in speed and power output but in opposite directions. Similar to gra-
dients, the responses to wind effects also show significant variation 
among individuals.

Route familiarity, self-perceptions of commuting style and physical 
fitness, age, and total weight are tested as predictors in the mixed-
effects models, but neither is statistically significant (𝑝-value > 0.05) in 
explaining the variation observed in speed and power output. Similarly, 
we include the ‘‘location’’ variable to test whether the unobserved 
location-specific factors are significant predictors in our data sets. 
Location is notably not a statistically significant predictor in our mod-
els, indicating that any systematic differences between the Linköping 
and Wuppertal samples that cannot be explained by any of the other 
variables included in our models, e.g., type of infrastructure (separated 
bicycle path vs. mixed-traffic), are too small to be observed for these 
sample sizes. Instead, the observed differences in performance could 
largely be explained by gender and the characteristics of the trip 
(gradients, curves, presence of intersections, and wind).

4. Discussion and conclusion

This study presents a methodology using instrumented bicycles to 
analyze free riding behavior in two different locations. The main objec-
tive is to understand how different environmental and infrastructural 
features influence speed and power output.

The analysis reveals that speeds and power outputs vary substan-
tially between bicyclists and throughout the trip due to infrastructure 
design and environmental conditions. Speed distributions show reduced 
variation on steeper uphills and increased variation on steeper down-
hills. The speed on straight, flat, and windless terrain, referred to as the 
desired speed, can be seen as a trade-off between travel time and effort 
minimization, which reasonably corresponds to the observed (desired) 
power on these segments. The speeds we observe on uphills or against 
strong headwinds exceed those achievable if bicyclists kept to their 
desired powers, yet fall short of desired speeds. Hence, we conclude 
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that bicyclists compensate for the greater speed reductions, which 
would result from maintaining their desired powers, by increasing their 
power output on inclines and into headwinds. The extent of compen-
sation varies significantly among individuals likely due to differences 
in physical capacity and preferences or mechanical properties of the 
bicycles. The observed maximum power output sustained over time also 
reflects typical power outputs that bicyclists are willing to sustain in 
utilitarian trips; the observed power curves of participants range from 
2 to 8 W/kg over 1 s, significantly lower than those typical in sport 
bicycling. The mean and standard deviation of desired speeds (when 
not heavily impacted by infrastructure and environmental factors) are 
similar in Linköping (6.3 ± 0.9 m∕s) and Wuppertal (6.5 ± 1.1 m∕s). 
The higher desired power output observed in Linköping (182.7 ± 70.9
W) compared to Wuppertal (123.5 ± 47 W) may result from seasonal 
differences in bicycle traffic. Data collection in Linköping during the 
fall involved heavier clothing, which increases aerodynamic resistance. 
Within each trip, desired speeds and power outputs vary considerably, 
with a standard deviation per participant ranging from 0.3 m/s to 
1.7 m/s. However, future research needs to identify how much of the 
variation in these observed desired speeds over a trip stems from actual 
changes in desired speed versus contextual factors, such as the long-
lasting effects of previous infrastructure and anticipatory adjustments 
for upcoming infrastructure.

We conclude that some bicyclists display tactical behavior, presum-
ably to maintain speed and manage exertion on uphills. By boosting 
their speed (by pedaling) with the assistance of the downhill, some 
participants reduce slowdowns and impacts on travel time, which in 
turn may also reduce the effort needed for the uphill downstream. In 
contrast, other participants prefer to coast on the downhill. The analysis 
suggests the ‘‘boosting’’ behavior correlates with male participants and 
high desired speeds, and that familiarity with the route may be rele-
vant for these patterns to emerge. In Wuppertal, a different behavior 
emerges when dealing with long uphills. While young participants 
with relatively high desired power outputs continue to generate more 
power as the gradient becomes steeper, others maintain a relatively 
constant power output towards the end of the climb. This indicates that 
while power output may initially increase with gradient, the length 
of the uphill ultimately impacts the available power as the climb 
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Fig. 13. Distributions of individual intercepts and responses for the combined-locations model of (a) speed [model 3] and (b) power output [model 6] (kernel density estimate).
Note: The distributions represent deviations from the average intercept and fixed effect at the population level.
progresses. As physical exhaustion sets in, the power output may no 
longer correlate with gradient, and instead, it stabilizes or decreases 
over time on very long hills. Our findings also suggest that steep 
downhills may be perceived as risky for some participants, indicated 
by the large variation in speeds—maximum downhill speeds range 
from 5 m/s to 17 m/s. A limitation in this study is the lack of direct 
measurements of braking activity, which restricts the analysis of how 
risk perception influences speed choices on downhills. Future research 
should explore how much additional speed bicyclists are willing to 
accept on downhills before braking, i.e., how do trade-offs between 
travel time and perceived safety affect free riding on downhills.

The mixed-effects models reveal that individual-level variability 
may account for up to approximately 56% of the total variance in speed 
and power output in our data sets. Gender is an individual character-
istic that shows statistical significance in accounting for variation in 
speed and power output. In our model estimation, age and total weight 
are found to be insignificant; gender may already capture the effects of 
weight differences. Although bicycle type is potentially relevant, it is 
not included in the models due to limited variation within each location 
but merits future research. Elevation gain and loss provide additional 
context about the nature of the terrain, showing how bicyclists adjust 
their behavior based not only on the local gradient, but also accounting 
for the physical demands of extended climbs or descents. Moreover, 
there is a statistically significant variation among individuals in coping 
mechanisms concerning gradients and wind. Note that the observed 
power output to compensate for the strongest headwind (4 m/s) is 
comparable to the power output to overcome a relatively light incline 
(approximately 2 percent gradient). In this study, we find no significant 
differences in the magnitude of the impact of wind direction (tailwind 
vs. headwind) on free speeds, however, further research needs to 
investigate the effects of higher wind speeds than those observed in 
this study due to the non-linear relationship between bicycling speed 
and aerodynamic resistance. Overall, we conclude that the observed 
differences in speed and power output are largely explained by gender, 
gradients, curves, presence of intersections, and wind, underlining the 
importance of these factors in understanding bicyclist behavior.

The relatively small sample size in this study restricts the capability 
to conduct detailed subgroup analyses, e.g., by bicycle types, commut-
ing styles or physical fitness, or to validate robust models for estimating 
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bicycling behavior across different contexts. In both locations, we study 
frequent bicycle commuters, with the Wuppertal sample likely includ-
ing more enthusiastic or research-interested participants due to the 
lack of financial compensation. Consequently, the observed behavioral 
variation is likely an underestimate of the true heterogeneity present in 
bicycle traffic. We expect that a wider variety of bicyclists, including 
diverse fitness levels, bicycling expertise, and bicycle types, further 
increases heterogeneity in the impact of infrastructure and wind. Future 
research should address this by including larger and more diverse 
datasets with overlapping route features. Nevertheless, our findings 
demonstrate relevant relationships between hills, curves, and wind and 
bicyclist behavior, and highlight the substantial heterogeneity in how 
these factors affect speed (and power output) choices in bicycle traffic. 
Future research should also expand on free riding on bicycles with 
electrical assistance and free riding dynamics at various intersections, 
e.g., approaching, acceleration from a standstill position, etc.

The data collection method implemented in this study allows for 
observing free riding on a given route. By allowing participants to use 
a bicycle they are already familiar with, this method enables data col-
lection of naturalistic behavior. This setup facilitates the investigation 
of how the effects of hills, curves, and wind vary between bicyclists by 
reducing the effects of measurement equipment and the route traveled. 
However, there is a limitation in overcoming the learning curve associ-
ated with traveling on an unfamiliar route. Selecting a route that can be 
traveled back and forth, as done in Linköping, or recruiting participants 
who are familiar with the area where the experiment takes place, 
as done in Wuppertal, can partially mitigate this issue. Familiarity 
with the route does not significantly account for the variation in our 
data, suggesting that the implemented experimental setup does not 
have a major impact on naturalistic behavior. Modifications to the 
experimental design could involve having participants travel the route 
multiple times, or use the equipment to record several commuting 
trips; however, both modifications require longer data collection times. 
Having a setup in which participants travel their commuting routes 
could provide benefits in observing genuine commuting behavior over 
long periods, but also introduces challenges due to variations in route 
properties. For example, biases can arise as relaxed commuters might 
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prefer routes with less pronounced gradients, while fast and fit com-
muters might choose more direct but steeper routes. This variation may 
inhibit observation under a diverse range of infrastructure conditions 
for each participant. Road surface quality may further affect bicyclist 
behavior, as previous research correlates it with comfort and effort, 
which in turn may impact speed and power choices. Future research 
should consider surface quality in studies where road surface conditions 
vary substantially.

Data acquisition and processing using commercially available de-
vices is not overly complex, and may be sufficient for various traffic 
analyses. Additionally, we find that video recordings and participants’ 
self-record events along the trip are effective for detecting interactions 
with other road users, providing a comprehensive view of behavior 
constrained by other road users. Incorporating automated tools for 
audio and video processing could be beneficial, as manual processing 
can be time-consuming. Examining constrained behavior can be further 
explored in future research, with a key focus on deriving distances 
between bicyclists from either video analysis or additional sensors. 
Although few participants report minor impacts from instrumentation, 
such as pedals feeling unusual (due to their thicker design), cameras 
shifting, or issues with borrowed bicycles (e.g., gearing or seat height), 
we exclude data from participants who indicate these issues affected 
their riding behavior to avoid bias, which further reduces the sample 
size for analysis. Future research should explore ways to minimize these 
effects.
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