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Abstract 

Electrical bicycle ownership rates are growing rapidly. Despite differences to con-

ventional cycling, the two types of bicycles are generally not differentiated in travel 

demand modelling practice. This article analyses the choices to own electric and 

conventional bicycles in Germany at the personal level. We use data from the 

“Mobility in Germany” survey and other sources and estimate both a nested logit 

model and a multivariate probit model. While the average gradient of terrain near the 

residence has an expected, strong negative influence on the ownership of conven-

tional bicycles, electric bicycle ownership is much less negatively affected. The effect 

of socio-demographic variables is largely in line with that of the existing literature. 

A negative correlation of the error terms in the probit model indicates a substitutive 

relationship between the two ownership decisions. The high nest parameter value 

in the nested logit model indicates that the decision to own a conventional bicycle is 

secondary to the decision to own an electric bicycle. The results contribute to a better 

understanding of the motivations for or against bicycle ownership and create a basis 

for better consideration of electrical bicycle traffic in transport models.

Introduction

Between 2012 and 2023, the number of electric bicycles in Germany increased from 
1.3 to 9.8 million [1]. By 2023, they already accounted for more than half of newly 
sold bicycles in the country [2]. Despite this dynamic growth (Fig 1) and the mean-
ingful differences between electric and conventional cycling, most notably concerning 
speed, user groups, trip purposes, overcoming hills, and trip lengths, there are still 
few integrated transport models that take into account the effects of the electrifi-
cation of cycling and none in which e-bikes are considered as a fully-fledged and 
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independent means of transport across all modelling stages. This neglect of electric 
bicycles is partly due to a lack of data and understanding about electric bicycle traffic 
choice behaviour, which might result in uncertainties regarding the accuracy and 
forecasting ability of existing models [3].
Differences between conventional and electric bicycles (c-bikes and e-bikes) have 
been considered in research, particularly with regard to mode and route choice. In 
reality, however, the choice of whether to travel by c-bike or e-bike is usually pre-
ceded by the decision of what type(s) of bicycle to own. C-bike and e-bike ownership 
should therefore be taken into account when modelling mode choice. This is partic-
ularly relevant because the purchase of an e-bike is a more critical decision than the 
purchase of a c-bike due to the higher investment costs. To be able to analyse and 
forecast c-bike and e-bike ownership, current bicycle ownership must be examined in 
detail and modelling approaches must be developed. This study makes such a con-
tribution to representing the diversity of cycling in transport models in a more differ-
entiated way by presenting two models for the combined ownership choice of c-bikes 
and e-bikes. In particular, we are the first to use discrete choice models to investigate 
both c-bike and e-bike ownership and to consider average gradient, allowing for 
insights into how topography affects the two ownership decisions and how they influ-
ence each other. Therefore, the following research questions take centre stage:

1. Which factors influence the choice to own a c-bike and/or an e-bike?

2. What role does topography play in particular?

3. How are the two choices interlinked?

The rest of this paper is structured as follows: in section 2 we give an overview of 
factors influencing the ownership of e-bikes as well as types of discrete choice mod-
els that are commonly used for modelling the ownership of mobility tools. Sections 3 
and 4 describe the data used to estimate the models and the model specifications. 
In section 5, we present and interpret the estimated model parameters and discuss 
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Fig 1. Development of yearly bicycle sales [mln. ] in Germany based on data from [2].
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shortcomings, further research needs and implications for modelling practice, before ending with our main conclusions in 
section 6.

Literature

Influencing factors on e-bike ownership and use

There is comparatively little research investigating influencing factors on e-bike ownership. Socio-demographic factors 
were most commonly found to have a major influence on whether someone owns an e-bike, with different user groups 
demonstrating distinct user behaviours. Table 1 provides an overview of the findings from researchers in some European 
and North American countries. South and East Asia, where the term “e-bike” is generally used to refer to motorbike-like 
vehicles instead of bicycles [4], are not considered here.

The nearly unanimous finding that in particular older people own e-bikes suggests that the main motivation for their 
purchase is to be able to continue cycling despite advancing age and declining fitness. This is consistent with the results 
of direct surveys on purchase motivation [12]. In contexts with low subjective road safety, cyclists also state that they feel 
like they can compensate for deficiencies in the infrastructure and differences in speed compared to motorised traffic by 
riding an e-bike instead of a c-bike [11,12]. It is well established that personal attitudes such as environmental awareness 
or enthusiasm for cycling are of high relevance to both ownership and use of e-bikes [5,13–15].

Research investigating attitudes towards e-bike use and purchase intentions provides valuable indications of further 
influencing factors on e-bike ownership. Awareness of e-bikes is a precondition to acquisition. For university employ-
ees in California, Handy and Fitch [16] find that after the introduction of an e-bike sharing system, awareness of e-bikes 
increases substantially and the intention to use an e-bike for commuting increases slightly. In a Norwegian survey, Sim-
sekoglu and Klöckner [17] find that besides socio-demographic factors such as age, purchase intention is also influenced 
by respondents’ awareness of e-bikes, their perceived benefits, as well as subjective and descriptive norms, i.e., whether 
they believe that others expect them to own an e-bike and that other people own e-bikes. Kaplan et al. [18] report that the 
intention to use an e-bike in a c-bike and e-bike sharing system is stronger for women and the elderly in Poland. Human 
needs according to the ERG (existence, relatedness, growth) theory of needs were also found to be important determi-
nants of usage intention, with growth needs relating to a stronger intention to use a c-bike and a weaker intention to use 
an e-bike. For Polish society overall, Kwiatowski et al. [19] find that public perception of e-bikes is mostly critical; respon-
dents view them as expensive, advantageous only for the elderly, and are largely unaware of other e-bike benefits. Plazier 
et al. [20] investigate current and potential e-bike use in a rural region of the Netherlands. They find e-bikes are “used 
among a broad population of varied ages and backgrounds and for different purposes” (p. 1449), that e-bikes likely com-
plement car and substitute c-bike ownership, and that personal attitudes towards safety, fun and health benefits of e-bikes 
are important determinants of e-bike use.

Table 1. Literature overview about influencing factors on e-bike ownership. 

Country, source Personal traits supporting e-bike ownership Associated trip purpose

Denmark [5] Older age and high income, female, high cycling affinity Leisure, pick-up and drop-off

Germany [6,7] Older age, middle or high economic status, outside of large cities Leisure

The Netherlands [8] Older age and high income, female

The Netherlands [9] Older age Leisure

Middle-aged, full-time employed Commute

Middle-aged, part-time employed, female Leisure, shopping

Switzerland [10] Older age, female, suburban and rural, couples with children, very high and 
very low income

Commute

US and Canada [11] White, male, older age, high level of education Leisure

https://doi.org/10.1371/journal.pone.0322291.t001
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The role of topography with regards to cycling and the potential of e-bikes is frequently discussed, however little 
research on its influence on c-bike and e-bike ownership exists. An earlier work already demonstrated a negative correla-
tion between varied topography and bicycle ownership and use in Germany [6]. In a North American survey, “Because I 
live or work in a hilly area” was the most frequently cited reason for purchasing an e-bike [11]. Such findings lead to the 
hypothesis that e-bikes are particularly attractive in hilly areas where they can mitigate the negative impact of the topog-
raphy on cycling. On the other hand, there is evidence from other North American studies that hilliness might have only 
a small [21] or even insignificant [22] impact on (mostly conventional) bicycle use, both on the level of metro areas and 
persons. The influence of topography on e-bike ownership therefore remains unclear. We are unaware of any studies on 
discrete choice models that take into account the topography near the residential location on e-bike ownership. This may 
be because countries with a pronounced cycling culture and corresponding data are generally comparatively flat. This 
study closes this research gap.

Types of discrete choice models for mobility tool ownership

The decisions of individuals or households about whether to own a specific mobility tool is a discrete choice. The utility 
trade-offs can be described with discrete choice models and the model parameters can be estimated using revealed 
choice or stated choice data. Past work on mobility tool ownership has focussed primarily on cars and, to a lesser extent, 
on public transport season tickets [23]. Little attention has been paid so far to modelling bicycle ownership, as the pur-
chase cost of a c-bike is comparatively low and, at least in many European contexts, it can be assumed that every person 
who is able and willing to ride a c-bike has access to one. The higher purchase cost of an e-bike and the specific motiva-
tors for use increase the need for more differentiated modelling of the availability of bicycles.

Logit models are the most common model type for mobility tool ownership. The estimation of separate, binary logit 
models for each mobility tool would be inaccurate, as the decisions on their ownership are made dependently. Therefore, 
multinomial logit models are used that formulate choice options that consist of combinations of different mobility tools 
(bundles). Fatmi et al. [23] apply such a model to study mobility tool ownership of young adults in Toronto. Kohlrautz and 
Kuhnimhof [7] apply a similar approach to data from the German MiD 2017 survey to understand bicycle ownership as 
well as c-bike and e-bike mode choice, however without differentiating between c-bikes and e-bikes in ownership model-
ling or taking into account topography.

Multinomial logit models inherently assume the independence from irrelevant alternatives (IIA) property, which may not 
hold when dealing with bundles of choice options. Nested and cross-nested logit models provide a solution by allowing for 
correlations among related alternatives. Bundles of mobility tools are placed within nests (cross-nested logit allowing for 
overlapping nests), with each nesting level representing the decision about one mobility tool. Püschel et al. [24] use both 
a nested and cross-nested logit as well as a machine learning model to investigate car, car sharing and public trans-
port season ticket ownership of residents of Hamburg, Germany. Handy et al. [13] employ a nested logit model to jointly 
investigate bicycle ownership and consequent use by residents of six small US cities. On the top level a decision between 
“has no bike” and “has bike(s)” is made, and within the latter, a nested choice between “bikes non-regularly”, “regular 
transportation- oriented bicyclist”, and “regular non-transportation-oriented bicyclist” is made.

Probit models are widely applied in studies of mobility tool ownership due to their ability to account for interdepen-
dencies among choices by modelling correlations between error terms as explicit parameters. For example, individuals 
holding a public transportation season ticket are likely to have a lower utility for (additional) car ownership, and vice versa. 
In contrast to the previously mentioned approaches, studies employing multivariate probit models specify utility functions 
for individual mobility tools rather than a bundled set of tools, enabling more intuitive interpretation of parameters associ-
ated with each choice. Becker et al. [25] use such an approach to model the ownership of cars, public transport season 
tickets and car-sharing services in Switzerland. Scott and Axhausen [26] introduce the ordered probit model to model the 
number of public transport season tickets and cars per household in Switzerland. Yamamoto [27] uses a trivariate binary 
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probit model to compare factors influencing the ownership of bicycles, motorbikes and cars in Osaka and Kuala Lumpur. 
Ma et al. [28] apply a multivariate ordered probit model to investigate car, motorcycle, e-bike, and c-bike ownership of 
households in Hangzhou, China.

At the household level, it is sensible to quantify the number of available mobility tools. This can be achieved with an 
ordered logit approach. Here, while a single utility function is estimated for each mobility tool, threshold values indicating 
when a household owns an additional mobility tool (e.g., two cars instead of one) are also estimated. Maltha et al. [29] use 
this approach to model car ownership in the Netherlands. Pinjar et al. [14] combine an ordered logit model for the number of 
bicycles owned by a household with a binary logit model for the household’s choice of residing in a bicycle-friendly neighbour-
hood in a joint model system. This allows for residential self-selection effects to vary across households. Zhang et al. [30] use 
a zero-inflated Poisson model to investigate e-bike ownership in Zhonshan, China. It consists of a binary logit model aimed at 
predicting whether a household owns an e-bike at all, followed by a Poisson model predicting the number of e-bikes owned 
by households that own one or more e-bikes. Ding et al. [4] expand on this work by applying a semi-parametric generalized 
additive mixed model to the data, which allows for more relaxed assumptions regarding the linearity of the variables.

In contrast to static modelling approaches, dynamic approaches describe the change in ownership over time instead 
of the momentary stock of mobility tools in a household. For example, Gu et al. [31] investigate the influence of life course 
events (moving, birth of a child, etc.) on the change in the ownership of a car using an error component random parameter 
logit model in which the constants of the utility functions are household-specific and normally distributed. The choice options 
here consist of combinations of buying or keeping a car as well as the purchase of additional sustainable mobility tools.

Materials and methods

Data

This retrospective study is based on household and person-level data from the B3 local dataset package of the “Mobility 
in Germany 2017” (German: “Mobilität in Deutschland”, MiD 2017) survey [32] and two additional spatial datasets. The 
data is anonymized, does not contain medical information, and is publically available from the German Aerospace Center. 
For this reason, we did not seek approval from an ethics committee. In the MiD, the availability of c-bikes and e-bikes is 
recorded at the person-level and can assume different values for different people in the same household. For example, 
survey respondents frequently indicated no e-bike availability for underage household members, even when an e-bike 
was available to other household members. The socio-demographic variables age, level of education, gender and occu-
pation are also available at the person-level. The variables economic status, household size and grid cell of the place 
of residence are recorded at the household-level, but are also treated at the person-level in our models for the sake of 
uniformity. Below, we describe our data processing. The respective source code is available on GitHub: https://github.com/
buw-bicycle-traffic/ebike-ownership-model.

The spatial variables “spatial typology” (German: “Raumtyp”, degree of urbanisation) and “gradient” were linked to the 
MiD person-level data using the residential location which is coded in the MiD using a standardised grid of 1-by-1-km 
large cells [33]. The spatial typology was included as there are clear differences between the use of c-bikes and e-bikes in 
urban and rural areas in Germany [6]. Spatial typology is defined at the municipality level in the RegioStaR dataset [34], 
but neither the persons nor the 1km grid cells are assigned to municipalities in the MiD dataset. For the corresponding 
250-by-250-m grid cells, however, a bridge between cells and municipalities is available. Therefore, for the sake of sim-
plicity, each 1km grid cell was assigned one 250m grid cell located in its centre (more precisely, southwest of the centre 
of the 1km grid cell) in order to be able to assign a spatial typology code to each person via the grid cells and the official 
municipality key. Fig 2 shows the spatial typology as assigned to the grid cells.

The variable gradient is based on a topographic dataset provided by Burgdorf and Pütz [35]. For every 250-by-250-m 
large grid cell, it records the average gradient of terrain across that grid cell and its eight surrounding neighbours. We 
aggregate this further by computing the average gradient of each 1km cell based on its sixteen constituent 250m cells. 

https://github.com/buw-bicycle-traffic/ebike-ownership-model
https://github.com/buw-bicycle-traffic/ebike-ownership-model
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Even though most bicycle trips can be expected to reach beyond this immediate vicinity around the residential location, 
testing showed that further increasing the area used for computing individuals’ gradient values decreased model fit. The 
resulting gradient values assigned to the grid cells are shown in Fig 3.

All observations for which not all variables were fully recorded were excluded. Most notably, there was no information 
on bicycle availability for 26% of all respondents. Due to correlation between the youngest age group and the lowest 
level of education, we interact age with level of education and omit the lowest level of education from the utility functions 
in addition to the reference category “Abitur”. A low number of cases of adults with no education therefore also had to be 
removed. As the variables spatial typology and gradient require spatial localisation, only persons for whom the residential 
location was recorded at least at the 1km grid cell level were considered. This data processing reduces the available sam-
ple size from 316,361 (raw data) to 161,963 persons. Due to high computational demands of a probit model, a random 
subsample of 30,000 persons was used for model estimation. This sample size ensured a balance between computational 
efficiency and model reliability. Table 2 describes the statistical distribution of the categorical variables in the original raw 
data and in the sample used for model estimation. Fig 4 shows the spread of the continuous variable gradient for the esti-
mation sample as a box plot. Since all previous works identified age as an important influencing factor on e-bike owner-
ship, Fig 5 visualises the shares of bicycle ownership across age groups.

Only in one case there is a strong correlation (in its amount larger than 0.60) between independent variables of differ-
ent groups. This is the case for “age 0-17” x “education ‘no qualification (yet)’” (0.80). To address this, we interact those 
variables (see section 4). We do not include other mobility tools as explanatory variables for bicycle ownership because 

Fig 2. Spatial typology of 1km grid cells. Grid cell position from [33] and spatial typology of grid cells based on [34], both under DL-DE- > BY-2.0 
license.

https://doi.org/10.1371/journal.pone.0322291.g002

https://doi.org/10.1371/journal.pone.0322291.g002
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of model hygiene: car ownership and transit cards are influenced by similar socio-economic factors as bicycle ownership, 
which could introduce endogeneity. Without knowing the sequence of these decisions, including them may obscure the 
interpretation of bicycle ownership determinants. While a comprehensive model could treat all mobility tools as jointly 
determined, this would add complexity and reduce clarity. Therefore, we focus solely on bicycle ownership in this model.

Models

Based on findings from the literature, several model variants with analogous utility functions were tested. We report the 
model specification and results for both a nested logit model and a multivariate probit model. We present two different 
models because they have distinct advantages: While model parameters of the multivariate probit can be interpreted more 
intuitively due to its utility functions representing one type of bicycle each instead of bundles, the nested logit allows for 
the computation of odds ratios and achieves a higher model fit. Furthermore, the nested logit captures the dependency 
between the two choices by bundling them and accounting for similarities between the bundles using nests, while the 
multivariate probit does not bundle them but captures the mutual influence as a correlation of the error terms. This allows 
for different perspectives on the nature of the two choices’ relatedness.

The Python package Biogeme 3.2.10 [36] was for the logit model, while the R package mvProbit 0.1–10 [37] was used 
for the probit model. Like for data processing, the source code for model estimation is available on GitHub.

Nested logit

Our nested logit model assumes that each person decides in favour of one of four possible bundles b of bicycle types. These 
bundles consist of either only a c-bike (b = 1), only an e-bike (b = 2), both types (b = 3), or no bicycle at all (b = 4). Accord-
ing to Equation 1, each person chooses (dependent variable Y ) the option that is associated with the highest utility U .

Fig 3. Average terrain gradient [%] of 1km grid cells. Grid cell position from [33] under DL-DE- > BY-2.0 license, gradient based on data provided by [35].

https://doi.org/10.1371/journal.pone.0322291.g003

https://doi.org/10.1371/journal.pone.0322291.g003
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 Y =




1, if Ub=1 = max (Ub)
2, if Ub=2 = max (Ub)
3, if Ub=3 = max (Ub)
4, if Ub=4 = max (Ub)

  (1)

The utility of the reference bundle 4 (owns neither bicycle) is set to 0. For the other three bundles b, the utility U  for each 
person is described by utility functions according to Equation 2. They are identical in structure for each of the four bundles 
and differ only in the parameter values to be estimated. V  is the observable part of utility. The alternative specific constant 
ASC of every bundle is the same across all persons. βb, gradient  is the bundle-specific parameter for the person-specific 

Table 2. Descriptive statistics of variables at person-level. 

Variable and level Raw data
[%]

Estimation sam-
ple [%]

Variable and level Raw data [%] Estimation sample 
[%]

Bicycle ownership Household size

1 - only c-bike 72.9 73.1 1 - 1 person 11.4 16.8

2 - only e-bike 3.0 2.9 2 - 2 persons 42.3 48.8

3 - both 5.1 4.7 3 - 3 person 17.7 15.6

4 - neither 18.7 19.3 4 - 4 persons or more 28.6 18.9

Age Occupation

1 - 0-17 12.8 2.7 1 - employed 45.8 49.3

2 - 18-29 9.4 9.3 2 - education 14.8 7.9

3 - 30-39 8.0 9.3 3 - domestic 3.7 3.7

4 - 40-49 12.7 13.3 4 - retired 29.3 35.8

5 - 50-59 20.0 21.4 5 - other 6.3 3.3

6 - 60-69 18.1 20.5 Economic status

7 - 70-79 13.9 17.5 1 - very low 3.7 3.5

8 - 80 and older 4.8 6.1 2 - low 8.9 8.9

Level of education 3 - middle 39.3 44.0

1 - none (yet) 13.7 2.7 4 - high 38.1 34.1

2 - “Volks-/Hauptschule” 16.8 17.9 5 - very high 10.0 9.5

3 - “Mittlere Reife” 23.9 25.5 Spatial typology

4 - “Abitur” 14.9 16.9 11 - urban metropolitan N/A 55.7

5 - university degree 28.8 34.4 12 - urban regiopolitan N/A 20.1

6 - other qualification 1.9 2.2 21 - rural close to city N/A 12.8

Sex 22 - rural peripheral N/A 11.3

1 - male 50.3 50.1

2 - female 49.7 49.9

https://doi.org/10.1371/journal.pone.0322291.t002

Fig 4. Boxplot of average gradient near residential location at person-level.

https://doi.org/10.1371/journal.pone.0322291.g004

https://doi.org/10.1371/journal.pone.0322291.t002
https://doi.org/10.1371/journal.pone.0322291.g004
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variable gradient . Linking gradient with an additional exponential parameter instead of just a linear parameter was tested 
but rejected due to the negative impact on the model fit. β̂b,spatialtyp and ̂spatialtyp are vectors of the parameters and 
values respectively of the three dummy variables for spatial typology. β̂b,SD and ŜD represent the same for the socio- 
demographic dummy variables. The latter is expanded in Equation 3. Note the interactions of age with occupation and 
level of education. This is because the lowest age category correlates with the occupation “in education” and the level of 
education “none (yet)”. With this specification, parameter values for occupation and level of education are estimated only 
for adults, while the parameter for the youngest age group captures the combined effect of age and age-typical occupa-
tion and level of education for that age group. In addition to the reference category, the lowest level of education was also 
omitted since it only applies to persons in the youngest age category.

 Ub = Vb + εb = ASCb + βb,gradient ∗ gradient+ β̂b,spatialtyp ∗ ̂spatialtyp+ β̂b,SD ∗ ŜD+ εb (2)

 

ŜD = (age1, age2, age3, age5, age6, age7, age8, edu2 ∗ (1 – age1) , edu3 ∗ (1 – age1) , edu5 ∗ (1 – age1) , edu6
∗ (1 – age1) , sex2, occu2 ∗ (1 – age1) , occu3 ∗ (1 – age1) , occu4 ∗ (1 – age1) , occu5 ∗ (1 – age1) ,
eco1, eco2, eco4, eco5, hhsize2, hhsize3, hhsize4)  

(3)

Using the behavioural assumption from Equation (1) and the general utility definition from Equation (2), the probability of 
choosing alternative b over the other alternatives b′ becomes:

 P(Y = b) = P (Vb + εb > Vb′ + εb′∀b′ ̸= b) (4)

Assuming Gumbel-distributed error terms, one can derive a closed form for the multinomial logit choice probability, as first 
demonstrated by McFadden [38]:

 P(Y = b) = eVb∑
b′∈Yn

eVb′
 (5)

In multinomial logit, the error terms εb are assumed to be independent and identically distributed (i.i.d.) between individ-
uals and bundles. That assumption would be problematic in this case because the bundles contain overlapping mobility 
tools. In nested logit, similar alternatives (i.e., options sharing unobserved attributes) are grouped into nests (M). This 
allows for correlated error terms within each nest but assumes independence between nests. Namely, the error term εb is 
decomposed into two parts:

Fig 5. Bicycle ownership across age groups.

https://doi.org/10.1371/journal.pone.0322291.g005

https://doi.org/10.1371/journal.pone.0322291.g005
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 εb = ξn + ηb, (6)

where ξn is the component shared by all alternatives in nest n, and ηb is the i.i.d. component for bundle b. The probability of choos-
ing a specific bundle is the product of the conditional probability of b within its nest n and the probability of selecting that nest:

 P(Y = b) = P (Y = b | M = n) ∗ P(M = n) = eVb/µn∑
b′∈Yn

eVb′/µn
∗ eµnΓn∑

n′∈M eµn′Γn′
 (7)

where Γn, the log-sum term, is given by:

 Γn = ln
∑

b′∈Yn e
Vb′/µn (8)

Five nesting structures depicted in Fig 6 were tested. Nesting structure 2 was chosen due to highest adjusted . In the 
chosen nesting structure, the single nest parameter  determines the degree of similarity between options within this nest, 
namely owning an e-bike but not owning a c-bike, and owning both an e-bike and a c-bike. A value of 1 implies no correla-
tion, reducing the model to multinomial logit, while higher values indicate increasing similarity among bundles within the 
nest. For further information on nested logit, we refer to Koppelman and Wen [39].

Multivariate probit

In our probit model, a person does not choose one out of four alternatives, but decides in two binary decisions between 
two alternatives each. These decisions are whether to own a c-bike and whether to own an e-bike. The two dependent 
variables Yt describe whether a person owns a bicycle of type t (conventional and electric) according to Equation 9:

 Yt =
{

1, if Ut > 0
0, else

 (9)

Ut  is the utility of a person to own a specific type of bicycle t. Equation 10 describes the structure of these two utility func-
tions, which is identical to the nested logit model in the previous section. However, note the replacement of b by t.

Ut = Vt + εt =

 ASCt + βt,gradient ∗ gradient+ β̂t,spatialtyp ∗ ̂spatialtyp+ β̂t,SD ∗ ŜD+ εt (10)

Fig 6. Tested nesting structures.

https://doi.org/10.1371/journal.pone.0322291.g006

Fig 7. Decision structure of the multivariate probit model.

https://doi.org/10.1371/journal.pone.0322291.g007

https://doi.org/10.1371/journal.pone.0322291.g006
https://doi.org/10.1371/journal.pone.0322291.g007
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As in the logit model, the error terms εt represent the unobserved part of the utility. However for probit, they are assumed 
to be normally distributed between the individuals. In order to take into account the mutual influence of the decisions, 
they are also assumed be correlated for each person between the two decisions. Namely, they follow a bivariate normal 
distribution:

 
[
εcbike
εebike

]
∼ N

([
0
0

]
,
[
1 R
R 1

])
 (11)

where the global correlation coefficient R is an additional model parameter that is estimated using the data. The joint prob-
ability P that Yt=conv  takes the value yt=conv (0 or 1) and Yt=elec takes the value yt=elec (0 or 1) is given by Equation 12:

P (Yconv = yconv,Yelec = yelec) =

 Φ2[(2yconv – 1) ∗Vconv , (2yelec – 1) ∗ Velec , (2yconv – 1) ∗ (yelec – 1) ∗ R] (12)

Here,  is the cumulative density function of the bivariate normal distribution. The correlation  captures the mutual influence of the 
two decisions: If it is positive, unobserved factors increase the likelihood of jointly owning (or not owning) both types of bicycles 
(i.e., complementary effects), while a negative value of  indicates that unobserved factors reduce the likelihood of jointly owning 
(or not owning) both types of bicycle (i.e., substitutive effects). The model structure is visualized in Fig 7. Note that unlike in the 
nested logit model, the multivariate probit model considers the decisions about each type of bicycle not hierarchically but sepa-
rately, being linked by correlated error terms. For further information on multivariate probit, we refer to Greene [40].

Results and discussion

Parameter values and model quality

After presenting the model specifications, we now report the results of model estimation. Tables 3 and 4 show the 
estimated model parameters of the nested logit and the multivariate probit model. Reference categories used for 
model identification are included in cursive. The choice option “no bicycle owned” is the reference choice option for 
the nested logit model, with its utility set to 0. For each of the two binary decisions in the multivariate probit model, not 
owning the respective bicycle type is the reference choice option, with ownership being assumed if the utility for own-
ing that type is larger than 0. All parameters are tested against the null-hypothesis of them being 0, with the exception 
of the nest parameter, where it is tested against the null-hypothesis of being 1. Table 5 compares the two models. 
Note that while for probit, model parameters can be compared across bicycle types, with nested logit every bundle 
contains the outcome of two decisions regarding c-bike and e-bike ownership and one needs to scale using the nest 
parameters.
ASC: The constants have the expected signs and express the generally higher hurdle (especially price) when buying an 
e-bike than a c-bike.
Gradient: The average gradient near the residential location has a significant negative influence on the utility of owning 
a c-bike. In the probit model, an average gradient of 2.8% is as detrimental to owning a c-bike as the fact that a person 
is above 80 years old (compared to between 40 and 49). Such a gradient value is common in only very moderately hilly 
areas. A different picture emerges for e-bikes: The gradient parameter in the probit model is larger than 0, meaning gradi-
ent has a positive impact on e-bike ownership. In the nested logit model, the difference between the two types of bicycles 
appears less extreme at first glance, however the difference in utility between the nested bundles “c-bike and e-bike” and 
“only e-bike” is scaled by the value of the nest parameter.
Urban vs. rural: The overall picture that emerges from the nested logit model regarding spatial typology is that for rural 
residential locations, there is a higher utility for an e-bike, but with no clear indications for how it affects c-bike own-
ership. The probit model allows for a more differentiated picture with regard to e-bikes: Compared to the reference 
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category “metropolitan urban”, utility for owning an e-bike is indeed positive in more peripheral regions. However after 
also taking into account gradient, there is a clear indication that this added utility peaks in rural areas close to cities 
and decreases again for very peripheral areas. The impact of spatial typology on c-bike utility appears negligible in 
magnitude.

Table 3. Parameter values for the nested logit model. 

Only c-bike C-bike and e-bike Only e-bike

Parameter Value Rob. 
p-val.

Sig. Value Rob. 
p-val.

Sig. Value Rob. 
p-val.

Sig.

constant 1.99 0.000 *** -1.56 0.000 *** -1.71 0.000 ***

gradient -5.99 0.000 *** -3.48 0.000 *** -3.19 0.000 ***

spat. typ. metrop. urban

spat. typ. regiop. urban -0.089 0.030 * 0.112 0.092 * 0.128 0.058 *

spat. typ. rural close to city -0.021 0.668 0.345 0.000 *** 0.365 0.000 ***

spat. typ. rural peripheral 0.145 0.007 ** 0.407 0.000 *** 0.408 0.000 ***

age 0–17 0.321 0.392 -1.35 0.219 -7.03 1.000

age 18–29 -0.628 0.000 *** -1.95 0.000 *** -1.96 0.000 ***

age 30–39 -0.310 0.000 *** -0.803 0.000 *** -0.831 0.000 ***

age 40–49

age 50–59 -0.205 0.002 ** 0.426 0.000 *** 0.447 0.000 ***

age 60–69 -0.226 0.006 ** 0.755 0.000 *** 0.784 0.000 ***

age 70–79 -0.584 0.000 *** 0.363 0.013 * 0.397 0.007 **

age 80+ -1.67 0.000 *** -0.864 0.000 *** -0.799 0.070 *

edu. none (yet)

edu. “Volks-/Hauptsch.” -0.212 0.000 *** 0.054 0.556 0.096 0.030 *

edu. “Mittlere Reife” -0.088 0.090 * 0.048 0.580 0.076 0.386

edu. “Abitur”

edu. university degree 0.170 0.001 ** 0.127 0.136 0.114 0.186

edu. Other -0.303 0.004 ** -0.216 0.227 -0.183 0.308

sex male

sex female -0.37 0.000 *** -0.389 0.000 *** -0.368 0.000 ***

household size 1

household size 2 0.533 0.000 *** 0.719 0.000 *** 0.753 0.000 ***

household size 3 0.572 0.000 *** 0.565 0.000 *** 0.593 0.000 ***

household size 4+ 0.886 0.000 *** 0.906 0.000 *** 0.865 0.000 ***

occupation employed

occupation education 0.178 0.085 * 0.304 0.370 0.380 0.269

occupation domestic -0.459 0.000 *** -0.053 0.686 -0.042 0.748

occupation retired -0.464 0.000 *** -0.018 0.853 -0.015 0.879

occupation other -0.526 0.000 *** -0.286 0.076 * -0.300 0.065 *

eco. status very low -0.393 0.000 *** -1.06 0.000 *** -1.08 0.000 ***

eco. status low -0.126 0.019 * -0.508 0.000 *** -0.506 0.000 ***

eco. status middle

eco. status high 0.329 0.000 *** 0.515 0.000 *** 0.500 0.000 ***

eco. status very high 0.420 0.000 *** 0.667 0.000 *** 0.667 0.000 ***

nest e-bike yes 10.0 0.000 *** ***/**/* = 0.1/1/10%

https://doi.org/10.1371/journal.pone.0322291.t003

https://doi.org/10.1371/journal.pone.0322291.t003
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Age: As expected, the probit model describes a falling utility for c-bikes from the reference age group of 40–49 years 
onwards. More surprisingly, there is also a significant disutility for age 18–39 and only an insignificantly positive utility for 
age group 0–17 – albeit this category also expressing the effects of level of education and occupation for this youngest 
age group due to the interacting of these variables with age 18 + . It therefore stands to reason that the higher rate of 
c-bike ownership among minors is more adequately explained by other factors, such as household size. For e-bikes, utility 

Table 4. Parameter values for the multivariate probit model. 

C-bike E-bike

Parameter Value Rob. p-val. Sig. Value Rob. p-val. Sig.

constant 1.138 0.000 *** -1.952 0.000 ***

gradient -3.373 0.000 *** 0.656 0.004 **

spat. typ. metrop. urban

spat. typ. regiop. urban -0.087 0.000 *** 0.106 0.000 ***

spat. typ. rural close to city -0.014 0.597 0.203 0.000 ***

spat. typ. rural peripheral 0.074 0.009 ** 0.097 0.007 **

age 0–17 0.103 0.542 -0.224 0.347

age 18–29 -0.237 0.000 *** -0.645 0.000 ***

age 30–39 -0.138 0.001 ** -0.244 0.000 ***

age 40–49

age 50–59 -0.078 0.017 * 0.190 0.000 ***

age 60–69 -0.202 0.000 *** 0.360 0.000 ***

age 70–79 -0.389 0.000 *** 0.371 0.000 ***

age 80+ -0.972 0.000 *** 0.101 0.132

edu. none (yet)

edu. “Volks-/Hauptsch.” -0.191 0.000 *** 0.108 0.005 **

edu. “Mittlere Reife” -0.116 0.000 *** 0.099 0.006 **

edu. “Abitur”

edu. university degree 0.095 0.000 *** -0.053 0.138

edu. other -0.183 0.001 ** 0.064 0.418

sex male

sex female -0.186 0.000 *** -0.047 0.043 **

household size 1

household size 2 0.223 0.000 *** 0.261 0.000 ***

household size 3 0.272 0.000 *** 0.132 0.003 **

household size 4+ 0.447 0.000 *** 0.114 0.014 *

occupation employed

occupation education 0.022 0.680 0.044 0.720

occupation domestic -0.156 0.001 ** 0.175 0.001 ***

occupation retired -0.160 0.000 *** 0.148 0.000 ***

occupation other -0.192 0.000 *** 0.029 0.680

eco. status very low -0.146 0.001 ** -0.234 0.002 **

eco. status low -0.114 0.000 *** -0.156 0.000 ***

eco. Status middle

eco. status high 0.173 0.000 *** 0.055 0.045 *

eco. status very high 0.192 0.000 *** 0.186 0.000 ***

R -0.235 0.000 *** ***/**/* = 0.1/1/10%

https://doi.org/10.1371/journal.pone.0322291.t004

https://doi.org/10.1371/journal.pone.0322291.t004
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peaks around 60–79 years and decreases for both younger and older ages. According to the nested logit model, the utility 
of owning only a c-bike peaks around 40–49 years and has an additional upward tick for age 0–17, while owning only an 
e-bike is most attractive for age groups 50–79. We point out that in Germany, while riding so-called S-Pedelecs, which 
can reach speeds up to 45km/h, is subject to an age restriction of 16 years, the vast majority of e-bikes have no such 
restriction.
Education: According to the probit model, a higher level of education means a slightly positive utility for a c-bike, while in 
the case of e-bike ownership, only the slightly positive parameters for “Volks-/Hauptschule” and “Mittlere Reife” are signif-
icant. In the nested logit model, even fewer parameters are significant, with the results for bundle “only c-bike” mirroring 
the findings of the probit model.
Gender: According to the probit model, women show a lower utility for owning a c-bike compared to men, analogous to 
their slightly lower bicycle use [6]. For e-bikes, the impact of gender is much lower, albeit not zero. The nested logit model 
confirms this regarding c-bike ownership, however the two bundles containing e-bike are associated with a similar disutil-
ity to bundle “only c-bike”.
Household size: The utility of any bundle increases with household size in the nested logit model. This was expected, as 
the probability that there is at least one bicycle in the household that can be shared increases as the number of people in 
the household rises. While probit mirrors this for c-bike, we find that e-bike utility peaks for two-person households. We 
hypothesise that this reflects the use of e-bikes primarily for leisure activities by couple households without children.
Occupation: Compared to the reference group of adult working people, housemen/-women, retirees, and other occupa-
tions show a significantly reduced utility for owning a c-bike. Owning an e-bike, on the other hand, is very clearly associ-
ated with a positive utility for retirees and housemen/-women. The nested logit model is less clear regarding the impact of 
occupation, other than that domestic and retired occupation goes along with a high disutility of owning only a c-bike.
Economic status: The higher the economic status, the greater the utilities of both a c-bike and an e-bike in the probit 
model. Likewise, in the nested logit model every combination of bicycle ownership also sees increased utility with higher 
economic status. This shows that bicycles are not generally used by low-income households as a substitute for a more 
expensive car, but instead are the result of a lifestyle choice.
R and nest parameters: The probit model’s parameter R, i.e., the correlation of the error terms between a person’s utility 
functions for the two different types of bicycle, can capture substitution effects, e.g., giving up a c-bike after purchasing 
an e-bike, as well as complementary effects. One conceivable complementary effect is that people with cycling-orientated 
attitudes (which are not explicitly included in our models and are therefore part of the error terms) have an additional posi-
tive utility for both a c-bike and an e-bike. R‘s negative, highly significant value of -0.235 shows that the substitution effects 
clearly dominate and that the assumption of an independent distribution of the error terms is not tenable. This contrasts 
with findings by Ma et al. [28], who (between c-bikes and Chinese-style e-bikes) find a value of only +0.027. The nest 
parameter of 10.0 indicate very strong correlation between the alternatives in the “e-bike” nest. We note that when testing 
nesting structure 1 (Fig 4), the nest parameter of “no e-bike” came out as 1. This suggests that the decision of whether to 
own an e-bike is far more critical than the decision to own a c-bike.

Table 5. Comparison of model properties. 

Property Nested logit Multivariate probit

Number of parameters 85 57

Sample size 30,000 30,000

Null-log-likelihood -41,588.8 -41,588.8

Log-likelihood -21,694.0 -22,333.4

Adjusted ρ2 [36] 0.476 0.462

https://doi.org/10.1371/journal.pone.0322291.t005

https://doi.org/10.1371/journal.pone.0322291.t005
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Suitability of model types and implications for policy and modelling practice

Both model types have advantages and disadvantages. Nested logit model coefficients can be interpreted as odds ratios and 
the model presented here achieves a higher model fit than the probit model even after accounting for the higher number of 
parameters. By modelling bundles, it can better depict their specific benefits for different groups of people, e.g., the phenom-
enon of e-bike-only owners among older senior citizens, while accounting for correlation between bundles using nest param-
eters. The probit model, on the other hand, can consider such correlations between the mobility tools of a bundle only with 
a global parameter R. However, the consideration of bundles represents a disadvantage for questions focussing on a single 
mobility tool, where the probit model can be interpreted more intuitively. This becomes even more relevant when more than 
two mobility tools are taken into account, as the number of bundles would grow exponentially. While it is possible to parame-
terise a nested logit model to allow for additive effects, this would forego the model’s ability to capture bundle effects. The two 
models presented here therefore complement each other in terms of the findings and interpretations they allow.

Our model can be used as a predictive sub-model within a larger integrated transport model. For such use cases, the 
interpretability of model parameters is less relevant than predictive power. We therefore recommend using the nested logit 
model, as this variant achieved a higher model fit. We demonstrated that not only socio-demographic characteristics but 
also the variables of spatial typology and especially gradient significantly influence the utility of c-bike and e-bike owner-
ship. Therefore, these variables should be included, especially when they vary substantially across the model area. Where 
data on c-bike and especially e-bike ownership is not available in Germany, our model can be used to gauge their magni-
tude, which is relevant for bicycle retailers and providers of bike sharing systems. For modelling efforts outside of Ger-
many, our work can inform suitable model types and relevant explanatory variables. The model furthermore sheds light on 
the true causal relationships behind c-bike and e-bike ownership. For example, we were able to demonstrate that higher 
e-bike ownership rates in very rural areas identified in previous works are not primarily due to the urban structure itself, 
but rather due to more varied topography and older residents. With e-bikes already being viewed as a valuable mobility 
solution by the elderly and residents of hilly areas, targeted purchase incentives could further increase their uptake and 
consequently cycling among other groups.

Limitations and further research needs

While our study has provided valuable insights into what factors influence c-bike and e-bike ownership, several limitations 
and avenues for future research remain to be explored. Bike-sharing systems were not considered, although they are a 
low-threshold option for getting to know e-bikes or substituting private e-bike ownership, particularly in urban areas. It was 
not possible to consider the price of bicycle types, which also would have made it possible to determine willingness to 
pay for other variables, due to a lack of data and the character of the MiD as a cross-sectional and revealed preferences 
survey (and thus a lack of variance in the purchase costs). It is conceivable that the variable gradient correlates with other 
factors such as local infrastructure quality or cycling culture, which were not analysed. Instead of gradient and spatial 
typology, which capture singular aspects of bicycle accessibility, future research could benefit from using a more holistic 
accessibility measure for c-bike and e-bike travel as an explanatory variable. As personal attitudes were not recorded in 
the MiD 2017, these could not be taken into account, although there is broad evidence in the literature for their relevance. 
The dynamic development of e-bike sales is probably largely due to changing attitudes and they are therefore of particu-
lar importance for predictive models. Since e-bike sales have already risen significantly again since 2017 [1], the present 
approach should be repeated in the form of a replication study once newer data becomes available.

Conclusions

This study contributes to a better understanding of the choice of owning conventional and electric bicycles and suitable 
model types by estimating a nested logit and a multivariate probit model based on data from the MiD 2017 survey and 
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other sources. While the results of the multivariate probit model were more intuitively interpretably, the nested logit model 
achieved a higher model fit and could capture some bundle-specific effects. Regarding research question 1 (Which factors 
influence the choice to own a conventional and/or electric bicycle?) we can generally confirm the relationships known for 
the socio-demographic factors age, level of education, gender, household size, occupation, and economic status from the 
literature for the European context. Regarding research question 2 (What role does topography play in particular?) we find 
that while the utility for c-bike ownership decreases with average gradient around the residential location, this is not the 
case for electric bicycles. To our knowledge, we are the first to quantify this influence of the gradient of terrain near the 
residence location on conventional and electric bicycle ownership. Lastly, regarding research question 3 (How are the two 
choices interlinked?), the negative correlation of the error terms in the probit model suggests that unobserved substitution 
effects between the two types of bicycles outweigh unobserved complementary effects, providing the first evidence of its 
kind on this relationship. The adopted nesting structure and resulting nest parameter value of the nested logit model sug-
gest that the choice to own a conventional bicycle is subordinate to the decision to own an electric bicycle.

Future surveys and analyses should take into account not only the influencing factors of gradient, spatial typology and 
socio-demographic variables but also personal attitudes in order to enable predictive ownership choice models. Building 
on this work, in subsequent research projects we will look at mode choice behaviour differentiated according to conven-
tional and electric cycling and incorporate bicycle ownership into this.
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