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Cyclists and other types of road users who do not adhere to lane discipline pose a
challenge in microscopic traffic simulation. In most software, the models are
adapted to increase the lateral flexibility of road users, either through introducing
sub-lanes (SUMO) or introducing a continuous lateral axis (PTV Vissim). These
solutions enable the simulation of some behaviors, such as passing within the
same driving lane. However, other behaviors exhibited by these flexible road users,
including switching between cycling infrastructure, the roadways, and the
sidewalk, riding against the given direction of travel, and selecting unexpected
pathways to cross at intersections, remain difficult to simulate. This paper presents
a modeling approach for cyclists, users of micro-mobility modes, and other non-
lane-based road users. This method uses the concept of guidelines, or desire lines,
that represent the intended path of non-lane-based road users. Guidelines are the
same in form as the center line of road (sub-)lanes. Instead of following these lines
precisely, the guideline is used to determine the desired direction for the road user
in the next time step, which is used as input into an adapted social force type
model. The movement and interaction model is formulated based on the NOMAD
model for pedestrian dynamics. The single acceleration vector is divided into a
speed component and a direction component that are calibrated and validated
using trajectory data from cyclists at four signalized intersections in Munich,
Germany. Maximum Likelihood Estimation (MLE) is used to estimate the model
parameters and k-fold cross-validation is used to evaluate themodeling approach.
The results are discussed and an outlook for future research is presented.
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1 Introduction

Road users differ in their size, dynamics, vulnerability, and behavior. Transportation
systems in many countries are centered around the requirements of one type of road user:
motorists. Road infrastructure is designed and built to serve the drivers of cars and trucks
and the traffic rules and regulations ensure efficiency for motorized traffic. The recent revival
of utilitarian cycling, innovations in bicycle engineering that have led to an uptake in e-bikes
and cargo bicycles, and the introduction of novel micro-mobility devices, such as e-kick
scooters, fundamentally transform urban traffic. The lane and rule-based behavioral patterns
associated with motor vehicle traffic are becoming less predominant. These new transport
modes are smaller, more flexible, and less encapsulated, leading to more diverse movement
patterns andmore intuitive interactions between road users. However, tools used to plan and
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evaluate transportation systems, including microscopic traffic
simulation, are not yet able to realistically and reliably recreate
this emerging urban traffic.

Operational behavior models are mathematical representations
of movement and interactions between road users. They are used in
microscopic traffic simulation tools such as SUMO (Krajzewicz et al.,
2014) and PTV Vissim (Fellendorf and Vortisch, 2010) to
realistically advance simulated road users to their goal or along
their desired pathway while reacting to other road users and their
environment in a realistic way. The road environment is complex
and includes static and dynamic, physical and conceptually defined
obstacles, traffic rules, and behavioral norms. Although the input is
intricate, the output of an operational behavior model is simple: an
acceleration vector a(t) that is generated for each simulated road
user in each simulation time step.

In conventional car-following approaches, acceleration is
reduced to a scalar quantity in the longitudinal direction of
travel. If movement is constrained by a leading road user,
longitudinal acceleration (or deceleration) is derived based on the
differences in position and speed of the two road users. The lateral
position is not considered in this type of model. In simulation
visualizations, vehicles are typically shown moving along the center
of the driving lane. Over the last 70 years, a wide variety of car-
following models have been formulated and calibrated to recreate
the flow of motor vehicle traffic under many conditions. In general,
one-dimensional movement and interaction approaches based on
desired speeds and car-following models are relatively simplistic and
can realistically simulate road users whose behavior is governed by
lane discipline. The driving lane-based model is shown
schematically in Figure 1A.

Pedestrians exist on the other side of the spectrum from
motor vehicle traffic. Their movement is not controlled by lanes;
rather, people traveling by foot move freely on a two-dimensional
plane and interact with one another on a more intuitive and less
rule-oriented basis. The most common family of models used to
simulate this behavior are social force models, the first of which
was introduced by Helbing and Molnar (1995). The operating
principle of these force models is that the acceleration vector in
each time step emerges from the sum of various attractive and
repulsive forces experienced by the pedestrian. For example, the
destination acts as an attractive force that “pulls” the pedestrian
towards it, while repulsive forces “push” the pedestrian away
from obstacles and other pedestrians (or other road users). Other
forces such as “pull” forces to points of interest or cohesive forces
between groups of “friends” can also be included.

The behavior of cyclists and users of many micro-mobility
devices falls somewhere in between that of a pedestrian and a
motorist. Their movements and interactions are more intuitive
and less dependent on lane discipline and traffic rules than
motor vehicle drivers. The lack of a vehicle exterior makes it
possible for cyclists and micro-mobility users to communicate
with other road users in a more human way. Compared to
pedestrians, however, these road users have one main axis of
movement and are less able to change their velocity at any given
moment. Analogous to motor vehicle traffic, engineering measures
such as braking distance, minimum turning radius, and the design
speed of infrastructure have a meaning for bicycle and micro-
mobility traffic that they do not for pedestrian traffic. However,
cyclists and micro-mobility users are capable of adjusting their
behavior to adapt to the surrounding environment. In busy
urban centers or shared spaces, they can slow down and move
and interact similarly to a pedestrian. When moving on a road
characterized by higher traffic volumes and higher traveling speeds,
they can reduce their lateral movement and travel in a mainly
longitudinal direction, adhering to the given rules of the road.

Other notable behaviors of cyclists and micro-mobility users
include the ability to flexibly adjust their lateral position within a
(bicycle) lane to pass other road users (Khan and Raksuntorn, 2001;
Yuan et al., 2018), switch between the roadway, cycling
infrastructure, and sidewalks (Twaddle and Busch, 2019), and use
of unexpected routes to cross intersections (Imbert and Te
Brömmelstroet, 2014; Wexler and El-Geneidy, 2017; Lind et al.,
2021). It is clear that behavior models developed for the uniform
and relatively predictable behavior of motorists can and will not
simulate cyclists or users of micro-mobility devices with adequate
realism.

How can the movement and interactions of such adaptable road
users be modeled? Typically, modifications are made to the simulation
environment that allows car-following models to be applied to non-
lane-based traffic. In SUMO, a driving or bicycle lane is divided into
multiple sub-lanes. Within each sub-lane, the simulated road users
move along the one-dimensional lane, their movements controlled by
dynamics models and their interactions governed by car-following
models (Sekeran et al., 2022). The lateral movement between sub-
lanes is controlled using the same or similar models as those used for
lane selection and lane change for motor vehicle traffic. The sub-lane
approach is illustrated in Figure 1B. Falkenberg et al. (2003) proposed a
model in which the longitudinal behavior is governed by a car-following
model and the lateral position within a lane is determined by
maximizing the Time-To-Collision to leading vehicles/cyclists in the

FIGURE 1
Schematic of a lane-based simulation environment (A) and the sub-lane extension (B).
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same lane. The lateral and longitudinal models work independently of
one another. An adaptation of this model is implemented in PTV
Vissim.

These pragmatic approaches allow for the more realistic simulation
of cyclists, micro-mobility users, and mixed traffic flows, in which road
users pass each other within one lane. However, the flexible nature of
non-lane-based traffic, particularly at intersections, or when switching
between infrastructures (bicycle lane, sidewalk, and roadway), is not
natively replicable (Twaddle et al., 2014a).

Social force models have been formulated for bicycle traffic
based on the original concept of pedestrians (see, for example, Li
et al. (2011), Li et al. (2021), Liang et al. (2012) and Schönauer et al.
(2012)). Although the flexibility of cyclists and their interactions
with other road users can be replicated in a realistic way using social
force models, the movement must be limited to reflect the dynamics
of riding a bicycle. In addition, it can be difficult to replicate tactical
behaviors, such as selecting between different types of pathways
across an intersection, and using social force alone.

In this paper, a method for linking the modeling paradigms used
to simulate motor vehicle traffic (one-dimensional lane-based
models) and pedestrian traffic (two-dimensional social force
models) is presented. This approach enables the simulation of
flexible movement patterns while maintaining a mainly
longitudinal movement. This model is based on the principle of
guidelines, or desire lines, which lead each simulated cyclist or other
non-lane-based road user to move along the road to their
destination. However, unlike the one-dimensional structure for
modeling motor vehicle movement and interactions, road users
move freely on a two-dimensional plane, so their movement and
interactions are decided by an adapted social force model.

The Python package CyclistModel is publically available and was
used to implement the proposed modeling framework with the
open-source microscopic traffic simulation tool SUMO and the
Traffic Control Interface TraCI. The modeling framework for
non-lane-based road users was developed based on observed
cyclist behavior and calibrated with data from bicycle traffic, the
concept applies to any type of road user who is not bound by lane
discipline.

This model and the text in this paper were originally presented
in the dissertation “Development of tactical and operational
behavior models for cyclists based on automated video data
analysis” by Heather Twaddle (Twaddle, 2017) (the maiden name
of the author of this paper).

2 Materials and methods

The NOMAD model for pedestrian dynamics is conceptualized
based on balancing walking costs and activity utility (normative theory).
The final formulation is similar in many aspects to the social force
model presented by Helbing andMolnar (1995) and can be categorized
as a type of social force model. The original NOMAD model is
presented in Normative Pedestrian Flow Behavior Theory and
Applications (Hoogendoorn, 2001) and a simplified version is
formulated, calibrated, and validated in the paper Microscopic
Calibration and Validation of Pedestrian Models: Cross-Comparison
of Models Using Experimental Data (Hoogendoorn and Daamen,
2007).

The simplified model formulation for the acceleration of
pedestrian p at time t, ap(t), is given in Eq. 1 through Eq. 3.

ap t( ) � v0p − vp t( )
Tp

− Ap ∑
q∈Qp

upq t( ) e
−dpq t( )

Rp (1)

where:

dpq t( ) � rq t( ) − rp t( )���� ���� (2)

upq t( ) � rq t( ) − rp t( )
dpq t( ) (3)

The desired velocity v0p is a two-dimensional vector pointing
to the desired (interim) destination of pedestrian p. The velocity
vp(t) and the position rp(t) are two-dimensional vectors. The
distance between pedestrian p and an interacting pedestrian q is
given by dpq(t). The position of pedestrian q is given by rq(t). The
set of pedestrians within a certain radius of pedestrian p is given
by Qp. Four pedestrian-specific parameters, the desired speed V0

p,
the acceleration time Tp, the interaction factor Ap, and the radius
of interaction Rp, are included in the model. The acceleration
time Tp controls the intensity with which a pedestrian follows
their desired path at their desired speed. The interaction
parameter Ap controls the intensity with which a pedestrian
reacts to other pedestrians.

An extension to the basic model that accounts for the
anisotropic behavior of pedestrians is formulated in Eq. 4 and
Eq. 5. Anisotropy describes the tendency for pedestrians to react
most strongly to other pedestrians directly in their intended
pathway. Persons directly behind pedestrian p have no influence
on the movement while those ahead but not ‘in the way’ have a
relatively small influence.

ap t( ) � v0p − vp t( )
Tp

− Ap ∑
q∈Qp

upq t( ) e
−dppq t( )

Rp 1upq t( )·vp t( )> 0 (4)

where:

dp
pq t( ) � upq t( ) · vp t( )

vp t( )���� ���� + ηp
upq t( ) · wp t( )

vp t( )���� ���� (5)

The vector wp(t) is perpendicular to vp(t) with the same
magnitude. Pedestrian p only responds to other pedestrians in
front of him or herself, which is denoted by 1upq(t)·vp(t)> 0, an
indicator function that takes the value 1 if the interacting
pedestrian is in front of pedestrian p and zero if it is behind.
The factor ηp is constant and pedestrian-specific and denotes the
reaction difference of pedestrian p to obstacles or interacting
road users in front or to the side of the pedestrian (ηp > 1). Higher
values of ηb indicate stronger relative importance of road users
directly in the direction of travel compared to those slightly to the
left or right.

An adapted version of this dynamics model is applied to bicycle
traffic. The NOMAD model was selected because the behavioral
premise of the model also applies to cyclists; cyclists balance the
costs of cycling with the utility gained by reaching their destination.
To capture the mainly longitudinal behavior of cyclists and to be
able to easily model differences in the changes in speed and changes
in direction, the acceleration vector is divided into two separate
models. This makes it possible, for example, to differentiate the
magnitude of the reaction (interaction factor Ab) concerning the
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change in speed (Avb) and change in direction (Aθb) to different road
users or types of obstacles or traffic control.

Three versions of the models were formulated, calibrated, and
evaluated:

• a basic model in which the modeled cyclist/non-lane-based
road user responds equally to all other road users, regardless of
position or velocity.

• an anisotropic model in which the modeled cyclist/non-lane-
based road user responds more strongly to other road users
directly in their path of travel.

• A velocity anisotropic model in which the modeled cyclist/
non-lane-based road user responds less to other road users
moving with a similar velocity.

The models build on each other in terms of complexity.
Therefore, the velocity anisotropic model (which contains the
anisotropic model components) should provide the best results.
This improved output comes at the cost of more parameters to
calibrate and, as a result, more specification errors. These three
models are formulated and explained in more detail in the following
sections.

2.1 Basic model

The formulation of the separated norm and angle model for
non-lane-based road user behavior is given in Eq. 6 and Eq. 7,
respectively. In this paper, the modeling concept is applied to bicycle
traffic, and as such all variables are denoted for cyclist b. Throughout
the paper, capital letters represent scalar quantities and small case
letters denote two-dimensional vectors. Hence, v0p in Eq. 4 is the
velocity with a vx and a vy component and V0

p � ‖v0p‖.

ΔVb t( ) � V0
b − Vb t( )
Tvb

− Avb e
−min i Ds ,Dbi t( ){ }

Rvb 1ϕ< π
2

(6)

Δθb t( ) � θ0b t( ) − θb t( )
Tθb

− Aθb ∑
i∈IRU

Ubi t( ) e
−Dbi t( )
Rθb 1ϕ< π

2
(7)

where:

Ubi t( ) � vb t( ) × dbi t( )
Dbi t( )Vb t( ) sin ϕ ϕ � cos−1

dbi t( ) · vb t( )
Dbi t( )Vb t( ) (8)

In the change in speed ΔVb(t) equation (Eq. 6), the parameter
V0

b is the desired speed of cyclist b, Vb(t) is the current speed at time
t, Tvb is a speed relaxation parameter unique to cyclist b and Rvb is

the radius of interaction for bicycle b regarding the speed
adjustment. The set of other road users within a predefined
radius (e.g., 10 m) is given by IRU. The distance between road
user i and cyclist b is given by the vector dbi(t) � pi(t) − pb(t), the
scalar quantity of which is Dbi(t) � ‖dbi(t)‖. A graphical
representation of the vectors and angles used in Eqs 6–8 is
shown in Figure 2.

In response to the presence of the interacting road user i in
Figure 2, the depicted cyclist b will reduce their speed (ΔVb(t)< 0)
and will change direction away from the interacting road user in the
clockwise direction (Δθb(t)< 0).

In addition to separating the model into the norm and angle
representation of the velocity vector, the original NOMAD model is
adapted in two important ways. First, the reaction to a traffic signal is
included directly in the change in speed model. This is done by
mimicking the reaction of a cyclist to a large interacting road user
that cannot be passed. The outline of the signalized intersection is
denoted by a polygon that connects the stop lines of all the
approaches. The nearest point on the stop line polygon to pb(t)
is selected as ps(t). The distance vector ds(t) � ps(t) − pb(t) and
norm Ds(t) � ‖ds(t)‖ are analogous to the variables defined for
interacting with road users. This is only done for the change in speed
model because cyclists cannot maneuver around traffic signals.

Second, instead of using a constant bicycle-specific parameter to
control the interaction response Avb, a variable is defined based on
the current speed Vb(t), the desired speed V0

b and the speed
relaxation parameter Tvb that ensures simulated cyclists are able
to stop in any simulation second. If the current speed Vb(t) is large,
the interaction response Avb also increases in magnitude to allow for
a stronger deceleration response to avoid collisions in all possible
situations. In addition, this conversion reduces the number of
parameters in the model by one, enabling a more stable
prediction of the remaining model parameters.

Avb � V0
b + Tvb − 1( )Vb t( )

Tvb
(9)

The equation describing the change in direction Δθb(t) (Eq. 7) is
formulated similarly; θb(t) is the direction of travel of cyclist b at
time t, and Tθb, Aθb, and Rθb are constant cyclist specific parameters
controlling the change of direction specifically. Ubi(t) is introduced
to specify the position of the interacting road user concerning the
desired path of travel and enables cyclist b to move to the left in
response to a road user on the right and vice versa. Ubi(t) can take a
value of either −1 or 1 depending on the side of the interacting road
user relative to the velocity of bicycle b. The main difference between

FIGURE 2
Graphical representation of the vectors and angles included in
the models.

FIGURE 3
Graphical representation of the definition of desired change of
direction.
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Eq. 6 and Eq. 7 is that θ0b(t) is not a static parameter, asV0
b is in Eq. 6,

but rather changes to guide cyclist b along his or her desired pathway
across the intersection. The desired change in direction based on the
desired position of cyclists b at time t is shown in Figure 3.

The summation across all interacting road users in the set IRU is
restricted to the change in angle equation (Eq. 7). This reflects the
interacting behavior of road users. It is presumed that a cyclist adapts
their speed based only on the most critical of interacting road users. For
example, when riding in a single-file platoon of cyclists, a cyclist does
not ride slower if there are many cyclists ahead in the platoon than he
would if there were only one cyclist ahead. The speed is determined to
prevent a collision with the most critical interacting road user. In
contrast, the direction is adapted as a response tomany other road users
within a given area. This enables the cyclist to maneuver through a
group of cyclists. Furthermore, it is presumed that cyclists do not react
to road users positioned behind themselves, and to this effect the
indicator function 1ϕ< π/2 is deployed in all models includes the basic
model. This presumption was confirmed through initial evaluations of
models including interacting with road users in all directions.

2.2 Anisotropic model

The first variation of the basic model examined here is an
adaptation of the anisotropic NOMAD model, which takes into
account the position of the interacting road user i with respect to
the direction of travel of cyclist b. Using this approach, road users
directly in the line of travel of cyclist b have the largest impact on
the change in speed ΔVb(t) and direction Δθb(t). This extension
reflects the behavior hypothesis that cyclists, like pedestrians,
react to those in their field of vision (not behind them) and those
who are “in the way” of planned movement. The formulation of
the anisotropic model is given in Eqs 10, 11:

ΔVb t( ) � V0
b − Vb t( )
Tvb

− Avb e
−min i Ds ,Dp

bi
t( ){ }

Rvb 1ϕ< π
2

(10)

Δθb t( ) � θ0b t( ) − θb t( )
Tθb

− Aθb ∑
i∈IRU

Ubi t( ) e
−Dp

bi
t( )

Rθb 1ϕ< π
2

(11)

where:

Dbi
* t( ) � dbi t( ) · vb t( )

Vb t( ) + ηb
dbi t( ) · wb t( )

Vb t( ) (12)

Here, the distance between cyclist b and road user i is divided into
two components, one parallel and the other perpendicular to the
direction of travel of cyclist b. The vector wb(t) is perpendicular to
vb(t) with the same scalar quantity and is oriented in the direction of
road user i. The bicycle-specific parameter ηb describes the weighting of
the distance of two components relative to one another (ηb > 1). Two
different values of ηb are solved for in the model, one for the ΔVb(t)
component (ηvb) and one for the Δθb(t) component (ηθb).

2.3 Velocity anisotropic model

A final extension is proposed here to include the direction of
travel of the interacting road user in the change of speed and change
of direction model. The behavior hypothesis behind this extension is

that cyclists have a less pronounced response to interacting road
users moving with a similar velocity. For example, a cyclist moving
in a platoon of other cyclists will only make minimal adjustments to
his or her speed in response to a leading cyclist moving in the same
direction with a similar speed, even though this leading cyclist may
be very close in terms of distance. In contrast, the response to
another road user moving towards cyclist bwill be much larger, even
if this road user is further away. To account for this aspect of
behavior, the effective distance D**

bi (t) is increased or decreased
depending on the velocity vector of the interacting road user in
relation to that of cyclist b.

ΔVb t( ) � V0
b − Vb t( )
Tvb

− Avb e
−min i Ds ,D**bi

t( ){ }
Rvb 1ϕ< π

2
(13)

Δθb t( ) � θ0b t( ) − θb t( )
Tθb

− Aθb ∑
i∈IRU

Ubi t( ) e
−D**

bi
t( )

Rθb 1ϕ< π
2

(14)

where:

D**
bi t( ) � dbi t( ) · vb t( )

Vb t( ) + ηb
dbi t( ) · wb t( )

Vb t( ) + γb
vi t( ) · vb t( )
Vi t( )Vb t( ) (15)

The parameter γb reflects the bicycle-specific adjustment of the
effective distance depending on the similarity between the velocity of
the interacting road user i and that of bicycle b. The cosine of the
angle between vi and vb (

vi(t)·vb(t)
Vi(t)Vb(t)) ranges between −1 and 1 and as

such the parameter γb represents the adjustment of the effective
distance in meters. Two different values of γb are solved in the
model, one for the ΔVb(t) component (γvb) and one for the Δθb(t)
component (γθb).

2.4 Parameter estimation

For each of the proposed models, there are several cyclist-
specific parameters to be calibrated using observed trajectory
data (Table 1). Trajectories from cyclists were extracted from
video data collected at four signalized intersections in Munich,
Germany (Twaddle et al., 2014b). Videos were recorded during
the spring and summer months of 2013 and 2014 for between two
and 4 days per intersection. The observation period began at
approximately 7:00 a.m. and ended at about 7:00 p.m. The open-
source software Traffic Intelligence (Saunier, 2016) was used for
automated extraction of trajectories of a sub-set of videos and the
resulting trajectory database was manually controlled and
corrected. A total of 634 high-quality trajectories were used
for model calibration and validation (k-fold cross-validation).

The observed values for pb(t), vb(t) and pi(t), vi(t) for all
interacting road users in the set IRU are extracted from the
trajectory data for each time step t for each cyclist b.

TABLE 1 Model parameters to be calibrated.

Model ΔVb(t) Δθb(t)
Basic V0

b , Tvb , Rvb Tθb , Aθb , Rθb

Anisotropic V0
b , Tvb , Rvb , ηvb Tθb , Aθb , Rθb , ηθb

Velocity anisotropic V0
b , Tvb , Rvb , ηvb , γvb Tθb , Aθb , Rθb , ηθb , γθb
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Each trajectory has the form Sb � [ (xb, yb)t�0 (xb, yb)t�1
/(xb, yb)t�Tb

], where (xb, yb)t is the position coordinate of
cyclist b at time t and Tb is the duration of the trajectory.
Here, the position observations are aggregated such that the
frequency of 25 observations per second is reduced to 8.33
(25/3) observations per second. The noise in the position data
was partially resolved through this aggregation. The aggregated
position points are smoothed using the Savitzky–Golay filter
(Savitzky and Golay, 1964). The change in speed and change
in direction observations are derived from the smoothed and
aggregated trajectories.

The remaining vectors dbi(t) and wb(t), angle ϕ and the value
Ubi(t) are calculated from the pb(t), vb(t), pi(t) and vi(t)
observations. In each time step, a presumed desired direction
θ0b(t) is inferred using the representative trajectory for the cluster
to which cyclist b is found to belong. The representative
trajectory is assumed to embody the desired position points of
each cyclist along their trajectory. Without this assumed desired
trajectory, it is not possible to generate a θ0b(t) in each time
step. The desired direction in time step t is found by locating the
point on the representative trajectory nearest to pb(t) (point l1 in
Figure 4). A second point is specified at a distance V0 further
along the representative trajectory (point l1 + V0 in Figure 4). The
first point is necessary to act as a starting point for measuring the
distance V0 along the representative trajectory. A vector is drawn
between pb(t) and this second point, the angle of which is taken
to be θ0b(t). A graphical representation of this approach is shown
in Figure 4.

The model parameters are calibrated to fit the observed
behavior using Maximum Likelihood Estimation (MLE). This
method provides a means for deriving the values of a set of
parameters β � β0, β1, β2, . . . βm{ } in a model to best fit a sample
of data. This is achieved by expressing the likelihood as a joint
probability mass function of the sample of observations as shown
in Eq. 16 and Eq. 17. The likelihood L(β) is a function of the
parameter set β and is maximized to find the optimal set of
parameters.

L β( ) � P X1 � x1, X2 � x2, . . . , Xn � xn( ) (16)

L β( ) � f x1; β( ) · f x2; β( ) · · · f xn; β( ) � ∏n
i�1

f xi; β( ) (17)

Assuming that the observations are normally distributed, the
probability mass function can be expressed using Eq. 18 and the

joint probability mass function or likelihood of β is given by
Eq. 19

f xi; β( ) � 1				
2πσ2

√ e

−
x
pred
i

−xobs
i

( )2

2σ2
⎛⎝ ⎞⎠

(18)

L β( ) � ∏n
i�1

f xi; β( ) � ∏n
i�1

1				
2πσ2

√ e

−
x
pred
i

−xobs
i

( )2

2σ2
⎛⎝ ⎞⎠

(19)

The log of the likelihood L(β) is typically maximized:

L β( ) � −n
2
ln 2πσ2( ) − 1

2σ2
∑n
i�1

xpred
i − xobs

i( )2 (20)

The standard deviation σ2 must be determined in order to
numerically solve for the best fitting parameter set β. The
maximum likelihood estimator of the variance is given in Eq. 21.

σ̂2 � 1
n
∑n
i�1

xpred
i − xobs

i( )2 (21)

The log likelihood function given σ̂2 is expressed in Eq. 22. Using
this function, the parameter set β̂ can be solved for using numerical
optimization.

L β; σ̂2( ) � −n
2
ln

2π
n
∑n
i�1

xpred
i − xobs

i( )2⎛⎝ ⎞⎠ − n

2
(22)

β̂ � arg maxL β; σ̂2( ) (23)

Trajectory data from each of the observed cyclists at three of
the four research intersections were used to estimate parameters.
The parameter set for each cyclist is denoted as βb and includes
the parameters shown in Table 1. The model parameters are
calibrated for each observed cyclist using the following
equations:

L βb; σ̂
2
b( ) � −n

2
ln

2π
n
∑n
i�1

apredi − aobsi( )2⎛⎝ ⎞⎠ − n

2
(24)

β̂b � arg maxL βb; σ̂
2
b( ) (25)

where n is the number of observation points along the aggregated
trajectory. To ensure that n is large enough to find stable
estimates of β̂b, samples with fewer than 50 observations are
filtered out from the dataset. This reflects the recommendation by
Long (Long, 1997) to include at least 10 observations per
parameter. The majority of the trajectories include between
100 and 250 observation points.

The maximum log likelihood is numerically solved using the
SciPy Python implementation (The Scipy community, 2016) of
the Constrained Optimization BY Linear Approximation
(COBYLA) algorithm proposed by Powell (Powell, 1994).
Using this method, it is possible to set constraints that
prevent the algorithm from locating an illogical, but
mathematically optimal, minimum (e.g., extremely large
desired velocity V0

b and relaxation time Tb pairs). Initial
estimates of the parameters are supplied to the algorithm.

FIGURE 4
Graphical representation of the approach for finding θ0b(t).
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2.5 Model evaluation

The models are evaluated using K-fold cross-validation.
Using this method, the sample of observations (n per cyclist) is
randomly divided into K mutually exclusive sub-samples of
approximately equal size. The calibration of the parameter set
is repeated K times (or folds). In each fold, a sub-sample is held
back from the model calibration and the parameter set
β̂b sub−sample are estimated using the remainder of the dataset.
The calibrated model is then validated using the held back sub-
sample. The model predictions are made by taking the observed
position and velocity of the road users at each time step,
extracting or calculating the model vectors and scalars,
and computing the predicted ΔVb(t) and Δθb(t). These
predictions are compared to the actual change in speed and
angle observed at that time step. This type of validation reduces
potential influence from the random splitting of the data
because each of the observations is used exactly once for
validation.

In order to assess the predictive power of the models, the
performance is compared to the constant velocity model in
which acceleration equals zero in each time step (null case).
Although this model is not capable of simulating traffic, it
provides a useful method to determine if the predictions made in
each time step are significantly better than a prediction of 0. Two
measures are used to compare the developed models with this base
model. The average improvement in log likelihood and the log
likelihood ratio test. The average improvement in log likelihood,
which indicates the overall improvement in model performance, is
given by Eq. 26:

I � ∑b∈B L βb; σ̂
2( ) − ∑b∈B Lb null∑b∈B Lb null

���� ���� (26)

Where B is the set of observed cyclists and Lb null is the log
likelihood of the constant velocity model. The log likelihood
ratio test is a statistic that enables the comparison between
models of differing complexities. Because model estimations
inherently improve with each additional parameter, the
magnitude of this improvement with respect to the increase
in degrees of freedom must be examined to determine if a
complex model is better. The test statistic for the log
likelihood ratio test is given by:

D � 2 L βb; σ̂
2
b( ) − Lb null( ) (27)

D is compared with the critical value χ2 from the chi-squared
distribution with degrees of freedom df � dfalternative − dfnull.
The degrees of freedom dfalternative is the number of parameters
for each model shown in Table 1. Models are accepted as
significantly better if p< 0.1. The percentage of models (one
model per observed cyclist) that pass this test is used as an
assessment measure for the overall model performance. The
calibration and validation algorithm implemented here is shown
in pseudo code below. All three model variations are tested using this
approach.

The models are tested using different delay times that represent the
reaction times of the observed cyclists. It is presumed that, likemotorists,
cyclists do not respond immediately to stimuli in the road environment.
Instead, a certain amount of time is required to collect sensory
information, process this data, decide upon an appropriate response,
and carry out this response. Mean reaction times for car drivers have
been estimated to lie between 0.7–1.5 s (Green, 2007). To reflect this
reaction time, the acceleration observations are collected at t + τ for
observations from time step t. Values of τ ranging between 0.0 s and 1.5 s
are tested and the model quality is assessed using I (Eq. 26) and the
percentage of models that pass the log likelihood ratio test (Eq. 27).

3 Results

The parameter distributions for the calibrated change in speed
model are shown and are briefly discussed in the first section
followed by the results for the calibrated change in angle model.
The best-suited reaction time τ is located by examining the overall
percent increase in the log likelihood I and the percent of calibrated
models that pass the log likelihood ratio test for each reaction time τ
between 0 s and 1.5 s at an interval of 0.12 s. The lowest reaction time
τ leading to markedly improved model performance is selected and
the calibrated model parameters for this reaction time are presented.

3.1 Change in speed

The evaluation measures for the varying reaction time τ values
are shown in Figure 5. A reaction time τ of 1.2 s leads to the best
prediction of change in speed values. This lies within the range
suggested by Green (Green, 2007) for car drivers but is considerably
larger than the 0.28 s found by Hoogendoorn and Daamen
(Hoogendoorn and Daamen, 2007) for pedestrians.

Based on a qualitative assessment of the distributions shown in
Figure 6, the calibrated model parameters are deemed to be roughly
represented by the normal distribution, although the lognormal
distribution may be more appropriate for the parameters Tvb and
γvb. Nevertheless, all parameters here were defined using the mean
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and standard deviation, as listed in Tables 2–4. The magnitudes of
these distribution parameters fall within an expected range of values
and the consistency between parameters occurring in multiple
models, V0

b, Rvb, Tvb and ηvb, indicates the stability of the
parameter outputs from the maximum likelihood estimation. The
resulting parameter distributions of the basic and anisotropic
models closely resemble those shown for the velocity anisotropic
model shown in Figure 6.

The correlations between the model parameters are also
important to consider and include in the subsequent traffic
simulation to avoid incompatible parameter combinations. The
Pearson correlation coefficient between the parameters is
calculated using the formula below:

Rab � n∑ab − ∑a∑b																										
n∑a2 − ∑a( )2( ) n∑b2 − ∑b( )2( )√ (28)

where n is the number of observations, and a and b are variables for
which the correlation is to be determined. The resulting correlation
ranges between −1 and 1, with 0 indicating no correlation between
parameters.

In the meta-analysis of 28 studies that measure the speed of
cyclists (Twaddle, 2017), a median value of 4.6 m/s (16.5 km/h) was
found. The higher value of 5.2 m/s (18.7 km/h) found here is logical
because this value represents the desired speed of a population of
cyclists rather than the realized or observed speeds. Realized speeds
are per definition lower as the cyclist must slow to avoid other road
users and obstacles and react to the signal control.

The relaxation time is a proxy measure for the maximum
acceleration. If the mean relaxation time of 3.8 s is combined
with the mean desired speed, a maximum acceleration of 1.4 m/
s2 emerges. The acceleration rate is slightly higher than those found
in the literature (Parkin and Rotheram, 2010) but falls within a
reasonable range. This is also expected as it is based on desired speed
and not observed speed. A radius of interaction of 3.1 m appears
reasonable but cannot be assessed in comparison to the findings of
other research because none were found. The mean and standard
variations of the parameters ηvb and γvb are realistic and signify an
average cyclist that weights interacting road users directly in the path
of travel with roughly twice the importance of those directly to the

side. Roughly 1 m is subtracted from the effective distance D**bi if the
interacting road user is traveling with the same velocity as cyclist b
and added if the velocity is opposite.

The correlations between the calibrated model parameters are quite
small. The most noteworthy correlations are the positive correlation
between the desired speed and both the anisotropic and velocity direction
factor, the negative correlation between the desired speed and the radius
of interaction, and the correlation between the anisotropic factor and the
velocity direction factor. Together these correlations indicate that cyclists
who aim to travel with a higher speed have a slightly smaller interaction
zone and aremore focused on interacting with road users directly in their
planned pathway and those with an opposing velocity vector. This may
point to a group of cyclists who are faster, more confident, and who are
more likely to accept risk.

3.2 Change in angle

The equation for predicting the change in angle proved to be
much more difficult to calibrate than that for the change in speed.
This is due to the inherent difficulty in isolating the desired change
in angle. Here, the representative trajectory of a cluster of cyclists is
used to approximate the desired direction of travel of a cyclist at each
position while crossing the intersection. The desired direction in
each time step θ0b(t) is therefore based on the representative
trajectory for the cluster to which cyclist b is assigned. It is very
likely, however, that the actual desired direction θ0b(t) varied
(slightly or greatly) from the approximated value. Another
difficulty arises due to noise in the trajectory data. Although the
high angle of the video camera to the intersections and smoothing
the trajectory data reduced the amount of noise, small variations in
the tracked centroid likely have a small impact on the quality of the
model calibration. Nevertheless, the calibratedmodels proved to be a
significant improvement over the constant velocity model for more
than half of the observed cyclists. Considering that Δθb(t) lies very
close to zero in each time step of 0.12 s and the lack of concrete data
describing the desired direction, the results presented below are
exceptional.

The evaluation parameters for the calibrated models, the average
improvement in log likelihood I (Eq. 26) and percent passing the log

FIGURE 5
Evaluation of the calibrated change in speed models for varying reaction times τ.
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likelihood ratio test, for reaction times τ ranging between 0 s and
1.5 s with an interval of 0.12 s are shown in Figure 7.

The optimal reaction time τ lies between 0.4 s and 0.8 s, which is
lower than the range identified for the ΔVb(t) portion of the model
(~1.2 s). Although the perception and processing components of the

reaction time are the same for both actions, the different levels of
complexity associated with the tasks may account for the difference
in overall reaction time. This may indicate that cyclists can react
faster to stimuli by adjusting their direction of travel rather than
their speed. A reaction time of τ � 0.6 s for change in direction is

FIGURE 6
Distributions of calibrated model parameters for the ΔVb(t + τ) velocity anisotropic model.

TABLE 2 Calibration results for ΔVb(t + τ) basic model (reaction time: τ � 1.2 s).

N = 634 Desired speed V0
b (m/s) Radius of interaction Rvb (m) Relaxation time Tvb (s)

Mean [CI] 5.20 [5.07, 5.33] 3.07 [3.00, 3.15] 3.75 [3.56, 3.94]

Std. 1.47 0.83 2.15

Correlation Rab V0
b 1 −0.10 0.04

Rvb — 1 0.05

Tvb — — 1

Frontiers in Future Transportation frontiersin.org09

Kaths 10.3389/ffutr.2023.1183270

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1183270


selected and the calibrated model parameters from this reaction time
are presented and evaluated.

The calibrated model parameter distributions are shown in
Figure 8. Based on a qualitative assessment of the distributions,
the hypothesis of normal distribution is rejected for the interaction
factor Aθb, the radius of interaction Rθb, the anisotropic factor ηθb
and the velocity direction factor γθb. All of these factors show a very
small deviation around a centric value. For this reason, the median
value of each calibrated parameter is selected as a constant for the

entire population of cyclists. This simplifies the models for the
simulation. The means, confidence intervals, and standard
deviations are nevertheless reported in Tables 5–7 if the reader is
interested. The relaxation time Tθb is deemed to be normally
distributed and as such a bicycle specific parameter is used.

The calibrated parameters have the expected magnitude and
sign. However, it is difficult to compare the results to the findings of
other studies because no studies were identified that examined the
response of other road users regarding the change in direction

TABLE 3 Calibration results for the ΔVb(t + τ) anisotropic model (reaction time: τ � 1.2 s).

N = 634 Desired speed V0
b (m/s) Radius of interaction Rvb (m) Relaxation time Tvb (s) Anisotropic factor ηvb

Mean [CI] 5.22 [5.09, 5.36] 3.13 [3.05, 3.21] 3.78 [3.59, 3.98] 2.05 [2.02, 2.09]

Std. 1.46 0.91 2.15 0.39

Correlation Rab V0
b 1 −0.07 0.05 0.24

Rvb — 1 0.03 −0.14

Tvb — — 1 0.08

ηvb — — — 1

TABLE 4 Calibration results for ΔVb(t + τ) velocity anisotropic model (reaction time: τ � 1.2 s).

N = 634 Desired speed V0
b

(m/s)
Radius of interaction

Rvb (m)
Relaxation time

Tvb (s)
Anisotropic
factor ηvb

Velocity direction
factor γvb

Mean [CI] 5.24 [5.11, 5.37] 3.10 [3.02, 3.17] 3.81 [3.61, 4.00] 2.05 [2.02, 2.08] 1.03 [1.00, 1.05]

Std. 1.44 0.82 2.14 0.32 0.30

Correlation
Rab

V0
b 1 −0.13 0.09 0.19 0.19

Rvb — 1 0.06 −0.04 −0.02

Tvb — — 1 0.08 0.06

ηvb — — — 1 0.52

γvb — — — — 1

FIGURE 7
Evaluation of the calibrated change in angle models for varying reaction times τ.
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(without a change in speed). The mean of the interaction factor
Aθb � 0.48 rad/s (28°/s) signifies the maximum response to an
interacting road user. The calibrated relaxation time for the
change in direction models is considerably lower than that in the
change in speed portion of the model. This makes logical sense as

changes in direction, which tend to be quite small, are realized
without significant delay. This value, however, is highly dependent
on the desired direction θ0b(t), which as stated before, is difficult to
isolate based on observed trajectory data. The anisotropic factor ηθb
and the velocity direction factor γθb agree very strongly with the

FIGURE 8
Distributions of calibrated model parameters for the Δθb(t + τ) velocity anisotropic model.

TABLE 5 Calibration results for the Δθb(t + τ) basic model (reaction time: τ � 0.6 s).

N = 613 Interaction factor Aθb Radius of interaction Rθb (m) Relaxation time Tθb

Mean [CI] 0.48 [0.47, 0.49] 1.92 [1.91, 1.93] 1.17 [1.11, 1.23]

Median 0.50 1.99 0.99

Std. 0.10 0.14 0.74

Correlation Rab Aθb 1 0.36 −0.39

Rθb — 1 −0.33

Tθb — — 1
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calibrated values found for the change in speed portion of the model
and appear to be realistic.

The Spearman correlation coefficient Rab between the
parameters (assuming normal distribution) are shown in Tables
5–7 but are not investigated further as the cyclist specific parameters
Aθb, Rθb, ηθb, γθb were found to be adequately represented by the
population parameters Aθ , Rθ , ηθ , γθ . These population parameters
are set as the median value for the observation.

4 Discussion

This paper presents a modeling approach for the movement and
interactions of cyclists and other non-lane-based road users. The
model belongs to the family of social force models, making it
possible to capture the flexibility and fluidity of the behavior
exhibited by these road users. However, by integrating guidelines,
or desire lines, that are “followed” by the road user and can defined
using the center lines of (sub-)lanes in microscopic traffic
simulations, it is possible to easily integrate this model in car-
based simulations and maintain the largely longitudinal
directions of travel. The evaluation of the model indicates a
significant improvement in comparison to a constant velocity
model. The estimated parameters are found to be realistic and
the reaction times for the change in speed and change in
direction models are feasible. The lower reaction time estimated

for the change of direction model in comparison to the change in
speed model suggests that cyclists more readily swerve to avoid
conflict than decelerate. The models have only been validated using
the Munich trajectory dataset. Using another trajectory data set for
validation would be a useful future step.

In comparison to motor vehicle or even pedestrian traffic,
significantly less research has focused on modeling and simulating
the movement and interactions of non-lane-based road users. One
reason for this has been the overall lack of the type of data needed to
adequately formulate and calibrate microscopic behavior models as
simulations that include these road users. Count data that is typically
used to calibrate and validate car simulations is insufficient for non-
lane-based traffic because no information about the lateral position of
the road users is included. Developments in technologies that make it
possible to collect large samples of accurate trajectory data, including
automated video processing and LIDAR data processing, will make it
possible to carry out model calibration and validation at the trajectory
level.

Not only observational data but experimental data are needed to
gain insight into the behaviors exhibited by non-lane-based road
users. In this paper, the desired direction of travel is estimated using
the centroid of a cluster of trajectories, which is a weak hypothesis, as
we cannot observe the intended path of travel. An example of an
experiment that could be carried out is setting a line to be followed
by a cyclist and observing deviations due to interactions with other
road users or the environment.

TABLE 6 Calibration results for the Δθb(t + τ) anisotropic model (reaction time: τ � 0.6 s).

N = 613 Interaction factor Aθb Radius of interaction Rθb Relaxation time Tθb Anisotropic factor ηθb

Mean [CI] 0.48 [0.47, 0.49] 1.91 [1.91, 1.92] 1.15 [1.09, 1.21] 1.96 [1.95, 1.97]

Median 0.50 1.99 0.98 1.99

Std. 0.10 0.14 0.72 0.10

Correlation Rab Aθb 1 0.33 −0.32 0.30

Rθb — 1 −0.48 0.41

Tθb — — 1 −0.21

ηb — — — 1

TABLE 7 Calibration results for the Δθb(t + τ) velocity anisotropic model (reaction time: τ � 0.6 s).

N = 613 Interaction
factor Aθb

Radius of
interaction Rθb

Relaxation
time Tθb

Anisotropic
factor ηθb

Velocity direction
factor γθb

Mean [CI] 0.48 [0.48, 0.49] 1.92 [1.91, 1.93] 1.12 [1.06, 1.17] 1.97 [1.97, 1.98] 0.97 [0.96, 0.98]

Median 0.50 1.99 0.97 1.99 1.00

Std. 0.08 0.14 0.66 0.07 0.09

Correlation
Rab

Aθb 1 0.53 −0.51 0.23 0.21

Rθb — 1 −0.59 0.28 0.30

Tθb — — 1 −0.30 −0.42

ηθb — — — 1 0.72

γθb — — — — 1
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Another issue that affects the evaluation and comparison of
behavior models for non-lane-based road users is the lack of
previous work defining validation parameters. For example, traffic
density for non-lane-based traffic cannot be measured in vehicles/
distance (veh/km) but instead has to be measured in vehicles/area
(bicycle/m2). Furthermore, it cannot be assumed that cyclists or users
of micro-mobility always use the road infrastructure as intended.
Switching between cycling infrastructure (if available), the roadways
and the sidewalk, riding against the given direction of travel, and
crossing intersections using unexpected pathways are examples of the
flexible behavior exhibited by cyclists and micro-mobility users. In
Twaddle (Twaddle, 2017), heat maps were used to include the spatial
distribution of cyclists over entire intersections to assess the validity of
the modeling approach. However, much more work is necessary to
systematically define useful parameters for the evaluation of
microscopic traffic simulation of non-lane-based traffic in the same
way that has been done for lane-based traffic (see, for example,
(Forschungsgesellschaft für Straßen-und Verkehrswesen, 2006)).

Once sufficient data is available, a foundation of knowledge
about the movement and interactions of cyclists is established, and
information about users of micro-mobility modes and other non-
lane-based traffic is gathered, it will be possible to develop and
compare behavior models for microscopic traffic simulation. It will
be possible to determine whether (sub-)lane based models, social
force type models, hybrid models, such as the model presented here,
or other types of models best recreate the movement and
interactions of cyclists, users of micro-mobility modes, and other
non-lane-based road users.
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