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Abstract
E-bike sales have been growing strongly across the globe in recent years. Despite the differences between e-bikes and con-
ventional bicycles, bicycle traffic is typically considered a uniform mode in macroscopic transport modeling. This is proble-
matic because such models do not allow for dedicated e-bike analysis and could therefore have adverse impacts on accuracy.
In this study, we therefore investigated whether and how e-bikes are presently modeled in practice and how e-bikes should
be modeled to improve data validity and usefulness. To this end, we conducted a review of 14 exemplary strategic transport
models and carried out a structured exploratory literature review of existing empirical research. We queried four fields of
research and investigated 29 relevant and unique sources covering influences on e-bike ownership and use as well as the char-
acteristics of e-bike mode and route choice. Based on this work, we identified three key findings: (1) purchase choice and
mode choice models must allow for scenario setting; (2) generalized costs should also include factors other than travel time,
and the factors’ weighting parameters should be estimated separately between conventional bicycles and e-bikes; and (3) it is
especially important for e-bike modeling to differentiate between person groups. Future research is needed to investigate
route choice parameters for e-bike users, especially concerning the aversion to slopes, and methods to collect e-bike-specific
data. Our findings demonstrated that, although modeling e-bikes is worthwhile, appropriate modeling approaches still need
to be developed and applied to demonstrate their practicability and usefulness.
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Modeling bicycle traffic in transport models is tricky.
Even though the subject is still developing with regard to
model theory and data availability, initial attempts have
been made to create more detailed models that distin-
guish between conventional bicycles (c-bikes) and electric
bicycles (e-bikes). With few exceptions, we were unable
to identify existing research dedicated to modeling e-
bikes in macroscopic transport models. To fill this gap in
the research, we conducted an assessment of current
modeling practices and a structured exploratory litera-
ture review into relevant adjacent fields of research. We
present our key recommendations for future efforts to
model e-bikes related to scenario setting, components of
generalized costs for mode and route choice, and seg-
mentation by person group.

E-bikes vary with regard to maximum speed, motor
power, control mode (throttle control or pedal assist),
and more attributes, resulting in a wide range of vehicles
from bicycle-style to scooter-style e-bikes (1). In this

paper, we focus on electrically power-assisted cycles with
no differentiation in the maximum speed, motor power,
or local traffic regulations. For example, both pedelecs
and speed-pedelecs (i.e., e-bikes with a top speed of
45 km/h) are included in this definition. Scooter-style e-
bikes powered by a gas handle are particularly popular
in Asia (2). However, we excluded scooter-style e-bikes
from our research, because in the context of transport
modeling these vehicles are more akin to private motor-
ized vehicles than bicycles.

With the rising share of e-bikes in bicycle traffic, most
prominently in Europe (3), the question arises of whether
and how e-bikes should be included in macroscopic
transport models. Compared with c-bikes, their higher
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speed and lower physical effort may result in cycling
becoming a more attractive mode of transport for differ-
ent user groups, trip purposes, trip lengths, or in topo-
graphically challenging areas. On the other hand, higher
costs, a lower level of physical exercise, and the need for
secure storage and charging facilities might have adverse
impacts on the benefits of e-biking on an individual and
societal level (4).

Strategic transport models are simplified representa-
tions of real transport systems and are commonly used
for analysis, forecasting, and policy evaluation (5). When
changes in the transportation system affect the choices
its users (can) make, it is necessary to include these new
options in the model to ensure that the outcomes con-
tinue to be accurate. The rise of e-bikes might also neces-
sitate new analytical approaches and more detailed
modeling of e-bikes to evaluate the impact of e-bike sub-
sidies or dedicated bicycle infrastructure, for example.

Aiming to identify whether e-bikes are considered in
any major macroscopic transport model, we inspected 14
exemplary European and North American models. We

identified models by looking at countries that are partic-
ularly strong in bicycle research (e.g., Denmark, the
Netherlands, Norway, Sweden) as well as the four most
populous countries in Europe and North America
(United States, Germany, France, and the UK). Since e-
bikes as defined in the previous section are less common
outside of these regions, we expected to find dedicated e-
bike models here if they existed at all. Where model doc-
umentation was not available to the public, we contacted
the model creators to provide us with the missing infor-
mation. All of the models we reviewed adhere to the
four-step-modeling framework. The list of all examined
models presented in Table 1 does not provide a represen-
tative overview of the degree of detail to which cycling is
considered in transport models globally, but demarcates
the current boundaries of bicycle modeling.

Most European models we investigated include
cycling as a combined mode, which is a single cycling
mode consisting of both c- and e-bikes, and do so in
both mode and route choice. In these cases, e-bikes influ-
ence model parameters to the degree that e-bikes are

Table 1. Exemplary Transport Models and their Considerations in Relation to E-Bikes

Model Area Model specification Source

GM4 Netherlands Distinct c- and e-bike modes. E-bike levels of
service (travel time, distance) same as c-
bike, but mode and route choice are
adjusted by a separate estimation of the
travel time coefficient. Scenario-based e-
bike ownership is distinct by age group.
Combined cycling mode only for transit
access and egress journeys

(6, 7)

COMPASS (under development) Copenhagen Implicit composite cycling mode. The fraction
of cycling trips that use e-bikes (f) and
travel time reduction factor for e-bikes
(15%) are manual inputs. Travel time of the
combined cycling mode is reduced across
all cycling trips by multiplying with 1-(f-
0.01)*0.15. No differentiation between c-
and e-bikes in mode or route choice

(8)

Verkehrsmodell Berlin 2030 Berlin Combined cycling mode (9)
OTM 7 Copenhagen Combined cycling mode (10)
Cynemon London Combined cycling mode (11)
NTM6/RTM Norway Combined cycling mode (12)
MODUS 3.1 Paris Combined cycling mode (13)
LuTRANS Stockholm County Combined cycling mode (14)
Nationales Personenverkehrsmodell Switzerland Combined cycling mode (15)
Landstrafikmodellen Denmark Combined cycling mode, in trip assignment

combined with walking
(16)

2016 City of Los Angeles Travel
Demand Model

Los Angeles Combined cycling mode, no trip assignment (17)

New York Best Practice Model New York City Combined cycling mode, no trip assignment (18)
Regional Travel Demand Model Northeastern Illinois No cycling mode (19)
VENOM Amsterdam Metro area No cycling mode (new regional models to be

devolved from GM4)
(20)
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present in the base-year data used for calibration. The
COMPASS model currently being developed by MOE
for the Greater Copenhagen area will use an approach
similar to the work of Hallberg et al. (4). This model
does not differentiate between separate modes for c- and
e-bike, but the cycling travel time is adjusted according
to a manually forecasted share of e-bikes. The Dutch
national model, GM4 (developed by Significance),
stands out as the only model known to us that models e-
bikes as a mode and route choice option distinct from c-
bikes. We are not aware of any strategic transport model
used in practice in which ownership of or access to c- or
e-bikes is modeled dynamically as an independent choice
(as opposed to the model-user setting static scenarios)
that feeds into the later model stages.

By providing an overview of exemplary transport
models from Europe and North America, we demon-
strated that differences between c- and e-bikes are rarely
considered in practice. Nevertheless, modeling practi-
tioners in Denmark and the Netherlands are making the
first advancements to differentiate e-bikes in transport
models. In the consequent main part of this paper, we
present the results of a literature review to inform such
efforts to include e-bikes in future transport models.

In the two sections to follow, we describe the methods
and results of a structured exploratory literature review that
focused on gathering knowledge from four fields of
research. In the discussion, we synthesize what our findings
revealed about the requirements for the dedicated modeling
of e-bikes. We then point out the limitations of this review,
possible modeling approaches, and future research needs.

Structured Exploratory Literature Review

A preliminary literature review yielded very few works
dedicated to e-bikes in transport modeling. Hence, we
investigated related fields of research focusing on factors
affecting e-bike ownership and use, and how e-bikes
might differ from c-bikes in mode and route choice. The
first two research fields deal with factors that could influ-
ence and change the propagation and usage characteris-
tics of e-bikes in the future. Finding a distinct body of
research on the influence of price on e-bike acquisition,
the impact of price is distinguished as a unique research
field and other factors influencing use are grouped
together in the first research field.The latter two research
fields investigate differences between c- and e-bikes in
mode and in route choice. A dedicated search string for
each research field was informed by the results from the
preliminary literature review. All search strings shared a
term restricting results to sources mentioning e-bikes.
The remainder of each string further restricted the results
to the focus topic of each research field. The research
fields were:

� Research Field 1: Impacts of infrastructure, topo-
graphy, and demographics on e-bike use;

� Research Field 2: Impacts of price on e-bike
availability;

� Research Field 3: Impacts of e-bikes on mode
choice; and

� Research Field 4: Impacts of e-bikes on route
choice.

Using the four search strings, we queried three data-
bases for peer-reviewed publications from January 2015
to June 2022 to focus on recent research, yet also provide
sufficient source material. These searches yielded 54 rele-
vant sources. After eliminating duplicates and adding
two additional sources from the preliminary literature
review, we identified 29 unique relevant sources. Most
studies examined the Dutch or Northern European con-
text. The number of sources per publication year was rel-
atively evenly distributed between three (2016, 2018) and
five (2017, 2021, 2022), however, no relevant sources
were published in 2019.

Table 2 provides an overview of what sources were
identified and for what research field they are relevant.
The results per search string indicate the number of
sources that were found to be useful for any part of this
review, which were identified using that search string
and database. An ‘‘F’’ in the row of a source indicates
that a source was found using that search string in at
least one of the three queried databases. An ‘‘R’’ indi-
cates for what research field a source was relevant. ‘‘F/
R’’ consequentially indicates that a source was both
found using a search string and relevant to the respective
research field. Two sources from a preliminary literature
review that were not identified in the structured explora-
tory literature review were added manually and are indi-
cated by an ‘‘A.’’

In our review, we did not explicitly consider trip gen-
eration and distribution because the expected impact of
e-bikes on these modeling steps was low and analogous
to non-mode-specific changes in accessibility and gener-
alized costs. We also did not consider the modeling of
onward impacts like changes in health or greenhouse gas
or noise emissions, because this fell outside the scope of
four-step-models in the narrow sense, despite being a
common application of transport modeling software.

Results

Research Field 1: Impacts of Infrastructure,
Topography, and Demographics on E-Bike Use

There is widespread agreement in the literature that the
key motivations for e-bike ownership are the ability to
cover longer distances and overcome hilly terrain while
avoiding physical exertion and sweat (22, 23, 25). The
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ability to continue cycling despite a decline in physical
ability is another major motivation (23). Kazemzadeh
and Ronchi provide a more detailed review of differences
between c- and e-bikes, focusing on comfort, vehicle
properties, travel behavior, and mode substitution (29).

When riding e-bikes compared with c-bikes, people
can maintain higher speeds with less effort and perceive a
higher subjective safety (1). This perspective is supported
by survey studies in Europe and North America, reveal-
ing that e-bike riders find it easier to keep up with the
speed of motorized traffic (23) and that 78.3% versus
63.7% of respondents feel safe on e-bikes compared with
c-bikes (25). The latter difference is even larger for sel-
dom or noncyclists, with only 48.7% feeling safe riding a
c-bike but 75.3% feeling safe on an e-bike. E-bikes close
the gap in subjective safety between cyclists and seldom
or noncyclists (25).

Findings from the literature concerning demographic
attributes vary. In North America, MacArthur et al. found
that e-bike users are disproportionately white, male,
elderly, and educated, with 28.7% unable to use a c-bike
because of physical limitations (25). A literature review
conducted by Fishman and Cherry supported these find-
ings in both the North American and European contexts
(1). In van Cauweberg et al.’s survey of people older than
65years in Flanders who were physically able to ride both
c- and e-bikes, the main factors identified as positively
influencing e-bike usage were being female, having a high
BMI, and a high number of motorized vehicles in the
household (26). In a study of Danish e-bike owners, e-
bikes were found to be most common among the elderly,
women, and better educated people. Analyzing data from
the national Dutch mobility survey, Kroesen revealed simi-
lar results for gender and age (28). High income was also
found to correlate with e-bike ownership. After taking into
account the correlation between income and education,
higher education was associated with a lower rate of e-bike
ownership. In a survey in Ghent (Belgium), Astegiano
et al. found that e-bikes are used by both genders to a
roughly equal degree (21).

De Haas et al. (27) and Haustein and Møller (22) con-
ducted a latent class analysis and cluster analysis, respec-
tively, to segment e-bike users according to their mobility
behavior, and sociodemographic and attitudinal survey
data. They identified five and three user groups, respec-
tively. Both segmentations demonstrate that the prolif-
eration of e-bikes occurs at different speeds and stages in
the different user groups. In the context of transport
modeling, Hallberg et al. asserted that differentiating
between age groups is recommended because e-bikes pro-
vide greater time savings for elderly people and hence dif-
ferent impacts on utility and consumer surplus (i.e., the
benefits of direct consumers resulting from an interven-
tion) (4).T
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Altogether, e-bikes have the greatest utility for people
who cannot or do not want to use a c-bike, like the
elderly or commuters avoiding physical exertion. The dif-
ferent motivations for e-bike use among user groups,
such as recreation, utilitarian considerations, or the thrill
of faster speed, lead to differences in e-bike adoption
rates and the types of trips made by e-bike. Research
findings on the influence of gender on e-bike adoption
are mixed. In North America, where cycling in general is
riskier and more male-dominated (48), men also use e-
bikes more frequently than women. In the European
context, e-bikes appear to have a higher adoption rate
among (especially elderly) women (22, 26–28).

Lessons for Modeling.
The large variation in e-bike ownership and usage pat-
terns makes it crucial to model e-bikes differentiated by
person group. This is necessary to capture the differences
in utility and facilitates a reliable estimate of the impact
of a rise in e-bike market share. On routes that lack dedi-
cated bicycle infrastructure, e-bikes afford their users
higher levels of subjective safety (1, 23, 25). This addi-
tional utility should be taken into account in transport
models, for example by reducing generalized cost penal-
ties on mixed-traffic sections for e-bikes. As e-bikes are
rarely purchased to replace a private car (22), modeling
car and e-bike ownership can be viewed as independent
of each other.

We were not able to identify quantitative research
exploring the impacts of local topography on e-bike own-
ership. As the necessary data have started to emerge in
recent years, such as Onderweg in Nederland and the
Mobilität in Deutschland surveys, we expect to see future
work exploring possible relationships.

Research Field 2: Impacts of Price on E-Bike Availability

As our findings from Research Field 1 showed, high
household income correlated universally positively with
e-bike ownership. The high price of e-bikes is commonly
cited as a barrier to purchasing one (23).

Anderson and Hong combine administrative-, insur-
ance-, and survey data about e-bike transactions in
Sweden before, during, and after a subsidy program (32).
Up to a rebate of 10,000 Kronas (1kr = 0.097 US$ in
April 2023), 25% of the purchasing price was subsidized
by the government. They showed that retailers passed on
the rebate to the consumers almost completely. In their
data set, average monthly e-bike purchases changed from
2,084 before to 3,613 during to 2,135 after the subsidy
period. Bigazzi and Berjisian developed an economic
model for e-bike rebates and applied it to Vancouver
and Victoria in Canada (33). Because there are large var-
iations in the price of different types of e-bikes, they

differentiated between three different price classes. They
assumed price elasticities of 21.0 to 23.0, with a central
value of 22.0. This appears adequate when compared
with the empirical price elasticity of roughly 23 found
by Anderson and Hong (32).

De Kruijf et al. reported on an incentive program in
the Netherlands aimed at car commuters. Instead of sub-
sidizing the purchase of an e-bike, participants received 8
to 15 euro cents per kilometer traveled on their e-bike
(31). This measure was highly effective, as e-bike mode
share among commuting trips rose from 0% to 68%
(31). Although these results are likely to have been influ-
enced by a self-selection bias of program participants,
another possible reason is that being given any incentive
at all, even if small, encourages participants to buy and
use an e-bike. In other words, such incentives might
serve as external initiators for reflecting on and changing
one’s mobility behavior, even if the monetary benefits
are small. In addition, the way participants’ e-bike use
was monitored using an app might be argued to consti-
tute gamification, further encouraging participants to
ride their e-bikes.

Lessons for Modeling. Concerning transport modeling,
these findings reinforce the notion that the price of e-
bikes is an important factor in determining personal e-
bike availability. However, as we found in Research
Fields 1 and 3, attitudinal factors, which can change over
time, also play a large role. This makes it difficult to pre-
dict long-term changes in e-bike ownership purely using
price elasticities. Accurately forecasting the development
of e-bike prices and the economic environment at-large
poses its own challenges. As we address in the discussion
below, our review suggests that modeling e-bike avail-
ability will involve at least partial scenario setting.

Research Field 3: Impacts of E-Bikes on Mode Choice

Within the four-step-model framework, mode choice can
be assumed to be the most relevant model step for evalu-
ating the transportation impacts of e-bikes. E-bikes must
substitute resource-intensive modes instead of only repla-
cing c-bike travel to fulfill their promise of contributing
to a more sustainable transport sector. To inform their
integration into mode choice models, we aimed to gather
evidence on e-bike mode shift. We identified 21 studies
relevant to this field of research and present the key find-
ings of our review in Table 3. Most of these studies were
conducted in the Netherlands (7), followed by the United
States or Canada (3), Sweden (3), Norway, Belgium,
Denmark (2 each), the UK, and Switzerland (1 each).

In the three North American sources (25, 35, 36), e-
bikes appear to afford a shifting perspective on cycling
away from being a leisure activity toward being a
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Table 3. Overview of Sources about E-Bike Mode Shift

Type of Intervention Source Data and locale Mode shift

Bike sharing (35) GPS data of riders in mixed c- and e-
bike-sharing system in Richmond,
United States

Longer average trip distance on e- than
c-bikes (3.9 versus 3.1 km)

(40) GPS, booking, survey, context data for
e-bike and e-scooter sharing system
in Zurich, Switzerland

Personal e-bikes source 48% of their
distance traveled from car, 29% from
public transport, 14% from c-bike,
and 9% from walking, compared with
1%, 43%, 29%, and 9% for shared e-
bikes

E-bike trial scheme (38) GPS tracking of car commuters during
e-bike trial scheme in Skövde,
Sweden

Mode share of car for commute fell
from 74% to 53%, e-bike rose from
0% to 17%

(44) Survey, tracking, interviews of
participants in an e-bike trial scheme
in Brighton, UK

Car, walking, and bus substituted the
most. Car travel from 87 to 69 km
per week

(36) Survey before, during, and after e-bike
trial scheme in Mountain View,
United States

Mode share of cycling rises by 35
percentage points during the trial and
stays at 28 percentage points above
the pretrial value even after the
program ends

(45) Survey among Norwegian car users
during e-bike trial scheme

Cycling from 0.5 to 1.6 trips/day,
distance cycled rose from 5.7 to 9.7
km/day, share of cycling of total
distance traveled from 28% to 48%

(42) Survey among Dutch car commuters
before, during, and after e-bike trial
scheme

Mode share of car for commute from
88% to 62%, e-bike from 0% to 18%,
c-bike from 5% to 13%

None, data collection and
analysis on specific group

(21) Survey, travel diary, GPS tracking
among e-bike users in Ghent,
Belgium

E-bike most frequently replaces c-bike
followed by public transport

(24) Survey among Norwegian e-bike
(almost-) customers

For the customer group, cycling
changed from 2.1 to 9.2 km/day, car
from 5.1 to 4.6 km/day. Control
groups: cycling from 5.1 to 6.0 and
3.0 to 4.0 km/day, car from 9.0 to 7.6
and 9.9 to 9.6 km/day. Mode share of
cycling increased by 32, 2, and 3
percentage points for the customer
group and the two control groups
respectively. Share of cycling of total
distance traveled from 17% to 49%
for customer group

(22) Survey among Danish e-bike users E-bikes most frequently replace c-bike,
followed by car

(39) Survey among Swedish e-bike users E-bikes substitute 55.28 person-km/
week traveled by car in urban areas
and 61.55 person-km/week traveled
in rural areas. Highest share of
substitution for c-bike for leisure
trips in urban areas (37%), lowest for
work trips in rural areas (11%)

(34) Survey among Dutch e-bike users E-bike most frequently replaces car
followed by c-bike. 2.1% induced
trips

(25) Survey among North American e-bike
owners

91.5% ride their e-bike at least once a
week, c-bike from 55.4% before to
27.6% after purchase

(37) GPS tracking and interview among
Dutch e-bikers

Mainly replaces car trips

(26) Survey among elderly Belgians 35% more cycling minutes when
owning an e-bike

(continued)
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utilitarian mode of transport. Adopters tend to be for-
mer leisure cyclists who then go on to substitute utilitar-
ian car trips with an e-bike (25). This is different to the
results of Fyhri and Sundfør, who found that Dutch e-
bike purchasers previously cycled less than the national
average (24). Unlike the European body of research we
reviewed, we did not identify any large-scale representa-
tive mobility surveys that included e-bikes in North
America, which suggests a limitation of e-bike data in
this geographic region.

One common methodological shortcoming of studies
investigating the impact of e-bikes on mode share is self-
selection sample bias, in which participants of an e-bike
trial or subsidy program might have been planning to
buy an e-bike or change their cycling habits anyway.
Kroesen overcame this limitation by developing a con-
ceptual model to assess the effect of e-bike ownership on
travel behavior (28). They estimated the model on data
from the national Dutch mobility survey. However, these
cross-sectional data do not allow for the same deductions
to be made on the causal relationship between e-bike
ownership and travel behavior that longitudinal data
would. This, as well as the original problem of sample
bias, is addressed by Fyhri and Sundfør, who collected
before-and-after data of e-bike purchases and also
included a control group of subjects who had strongly

contemplated purchasing an e-bike, but ultimately did not
(24). By observing e-bike use over a longer time span, they
avoided any novelty effects among the participants’ e-bike
use. By using longitudinal panel data, de Haas et al. (27)
and Sun et al. (41) generated even more naturalistic insights
into how mobility behavior changes after e-bikes are intro-
duced to a household. All four of these studies were con-
ducted in the Netherlands, where national survey and
panel data include e-bike ownership and use, and yielded
what are perhaps surprising results: e-bike ownership
reduces c-bike travel the most, followed by car travel (28,
41). In one case, e-bikes were found to statistically signifi-
cantly substitute only c-bike travel (27). Although one
study also found considerable reductions in car travel for
new e-bike owners, the effect was similarly strong for the
control group of participants that decided not to purchase
an e-bike (24). Taken together, this is strong evidence that,
at least in the Netherlands where cycling is already a well-
established mode of transport that competes with the pri-
vate car, e-bikes mostly replace c-bike travel but may only
marginally substitute car travel.

Hallberg et al. modified and applied a transport model
of the Copenhagen capital area to investigate the impact
of a rising share of e-bikes (4). They found that reducing
the share of c-bikes from 95% to 40% in a base network
scenario increases the total trip mode share of cycling

Table 3. (continued)

Type of Intervention Source Data and locale Mode shift

None, analysis of larger data sets (27) Netherlands Mobility Panel e-bike only significantly substitutes c-
bike

(28) National Dutch Mobility Survey E-bike owners travel 3.0 km/day on e-
bike and 0.9 km/day on c-bike,
compared with 2.6 km/day on c-bike
for non-e-bike-owners. E-bike only
very slightly reduces car usage and all
other modes, correlates positively
with car ownership

(41) Netherlands Mobility Panel 1.4 trips and 6.4 km/day on new e-bike.
Share of distance traveled: c-bike
from 20% to 2%, car from 58% to
49%, walking from 9% to 3%, e-bike
from 0% to 38%

Subsidy (32) Survey, administrative, insurance data
during, before, and after e-bike
purchase subsidy program in Sweden

E-bike reduces usage in days/week for
all modes. Car: 2.57 to 0.88, public
transport: 1.10 to 0.29, c-bike: 1.71
to 0.67

(31) GPS tracking of new Dutch e-bike
users during monetary per-km
incentive program

E-bike substitutes both car (234
percentage points of trip mode
share) and c-bike (232 percentage
points)

Other (4) Scenarios modeled in a modified
transport model of Copenhagen,
Denmark

For the base network, a bicycle mix of
95%/4.5%/0.5% (c-bike/pedelec/
speed-pedelec) results in a cycling
trip mode share of 22.2%, a mix of
40%/50%/10% results in a cycling trip
mode share of 24.5%
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from 22.2% to 24.5%. Unfortunately, they do not report
on mode-specific substitution rates. Working with an
agent-based transport model, Reck et al. investigated the
mode choice of users of a mixed e-bike and e-scooter
sharing system in Zurich (40). Their work revealed that
the substitution effect of e-bikes depends on whether the
person is using a shared or privately owned e-bike.

Several sources investigated the relationship between
trip purpose and mode substitution (21, 27, 34, 37, 39, 41,
45). The consensus is that, whereas e-bikes are used for a
variety of trip purposes, mode substitution varies depend-
ing on trip purpose. Car substitution is the strongest for
commute trips (27, 34, 37, 39, 41). Because of the differ-
ences in trip purpose and e-bike purchase motivations
among different person groups (see Research Field 1), sub-
stitution effects can also be expected to vary by person
group. Factors such as age and gender were found to have
opposite signs of effect for e-bike ownership and use (28).
Those who buy e-bikes despite belonging to a user group
with otherwise low adoption rates tend to use the e-bike
more intensively (28). However, it is unclear whether this
observation is restricted to the phase of early adoption.

Concerning mode shift, this review revealed that the
impact of e-bikes varies depending on the previous mode
share. Usually, the more established a mode of transport
the c-bike is, the more it is substituted by the e-bike (24,
27, 28, 41). When introduced to very carcentric people
groups, e-bikes might increase c-bike use owing to com-
plementary effects (38). The higher the previous car mode
share, the larger the amount of e-bike travel sourced from
that mode (34, 36–38, 44). Most e-bike intervention stud-
ies report rather large impacts. It is important to note that
low-impact interventions may be underreported.

Our findings corresponded with three other literature
reviews we identified. E-bikes substantially substituted
all other modes, with the exact amount varying by con-
text (43). More specifically, Bourne et al. found that e-
bikes source 23% to 72% of their trips from c-bikes,
20% to 86% from cars, and 3% to 45% from public
transport, depending on the region investigated (46). All
three reviews (29, 43, 46) echo our finding that the domi-
nant mode is substituted the most.

Lessons for Modeling. The lessons from the research field
reinforce the notion that it is necessary to model e-bike
use differentiated by person group. Different user groups
use e-bikes for varying purposes. For example, the elderly
use e-bikes as a replacement for c-bikes that they can no
longer ride, whereas younger e-bike adopters exhibit a
larger substitution of car travel (22, 26). Therefore, sub-
stitution effects might change as different user groups
acquire e-bikes in the future (27). E-bike trips are around
50% longer than c-bike trips (44) and ownership has a
generative effect on the total distance traveled (28). Our

findings demonstrated, perhaps unsurprisingly, that data
intended for e-bike model calibration need to be differen-
tiated by bicycle type and not only by person group, tra-
ditional mode choice, or trip purpose.

Several of the aforementioned studies (21, 24, 25, 31,
32, 36, 38, 42, 44, 45) actively promoted e-bike purchase
or use and reported larger mode shift impacts than might
be expected from uninfluenced growth of e-bike owner-
ship: an illustration of self-selection bias among the par-
ticipants. However, it is important to note that in the
context of transport modeling we also would not expect
people to acquire e-bikes randomly. Instead, as e-bike
availability rises, we would anticipate individuals with a
higher utility for an e-bike to acquire them earlier than
those with a lower e-bike utility. Despite this point, we
still expect the studies above to overestimate the mode
shift impact of e-bike acquisition compared with the
impact a transport model would need to replicate.
However, the discrepancy between these study designs
and reality is smaller than the difference between these
study designs and a hypothetical study design in which e-
bikes are given to a truly random group of people.

Integrating e-bikes into existing mode choice models as
an additional choice option is trivial in an abstract sense.
Finding parameter values to replicate observed mode
choice behavior is more challenging. The decision to use
an e- (or c-)bike is not purely rational, as attitudinal factors
also play a large role (42). Modeling these factors and
future societal changes is difficult, and we address this issue
in the discussion section below. Several sources (31, 36, 37)
additionally point toward the common concept in trans-
port research that fundamental changes in travel behavior,
such as choosing an e-bike instead of a c-bike or even
instead of nonbicycle modes, are more likely to occur after
a considerable external stimulus. This could be a change in
home or work location (37) or the act of participating in a
study (31, 36). Since transport models are frequently used
to forecast both short- and long-term changes in travel
behavior (5), we have to take this time lag in users’ reac-
tions to incremental changes in the wider transport system
into account. This means that instead of considering the
total utility of an option in a choice model, we should con-
sider relative changes in their utility as the true psychologi-
cal reason for any behavior change.

Research Field 4: Impacts of E-Bikes on Route Choice

Speed and hence the resulting travel time is a crucial
input for route choice models. In Knoxville, TN, e-bikes
were found to travel at an average speed (including accel-
eration and deceleration, but not stopping time) of
13.3 km/h on mixed-traffic roadways whereas c-bikes
only reached 10.5 km/h (47). On dedicated greenways, c-
bikes were found to be slightly faster than e-bikes, at
12.6 and 11.0 km/h respectively. The authors attributed
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this surprising finding to differences in trip purpose (i.e.,
exercise-focused leisure riders not using e-bikes) and they
detected no major differences with regard to average
wrong-way riding rates or the violation of stop signs or
traffic signals.

Schleinitz et al. conducted a naturalistic driving study in
Germany to investigate the speed and acceleration of dif-
ferent types of bicycles by age group, infrastructure, and
gradient (30). They found that the average free flow speeds
ranged from 16.1 (c-bike) to 19.0 (pedelec) to 24.9km/h
(speed-pedelec), with higher speeds being associated with
younger age groups, dedicated infrastructure, and down-
hill slopes. Acceleration is much higher for speed-pedelecs,
whereas c-bike and pedelecs have similar values (partially
because of e-bike riders being older on average).

Hallberg et al. provide the only source in our litera-
ture corpus that explicitly dealt with bicycle route choice
in the context of e-bikes and transport models (4). They
used 27 different speed values (3 bicycle types 3 3 cyclist
speed segments 3 3 infrastructure types, ranging from
13.6 to 31.5 km/h). At intersections however, only a gen-
eral delay of 30 s was added for traffic lights and 5 s for
roundabouts. Travel time was the only variable consid-
ered for mode and route choice. The authors set up trip
assignment in a way that the model differentiated accord-
ing to cyclists’ speed segment and bicycle type, assigning
trips to the fastest route in an all-or-nothing-approach.

Cyclists feel safer on e- than on c-bikes (1, 23). This
could lead to the assumption that e-bike users would
exhibit a lower preference for dedicated bicycle infra-
structure compared with c-bike users. This is indeed sup-
ported in the research by Chavis and Martinez (35). By
analyzing GPS data from a mixed c- and e-bike-sharing
system in Richmond, VA, they found that e-bikes are
more likely to travel on major and minor roads, which
typically do not have dedicated bicycle infrastructure,
and are less likely to travel on cycleways. Chavis and
Martinez excluded round-trips to ensure that leisure trips
were not included in their analysis (35). This reduces the
risk of distortions resulting from differences in user
demographics or trip purpose between c- and e-bikes. It
is important to acknowledge that in some regulatory
contexts, certain types of e-bikes (such as speed-pedelecs)
are not allowed to use dedicated cycling infrastructure.

In a qualitative study on e-bike commuters’ route
choice in Groningen in the Netherlands, e-bike commu-
ters cited speed and directness as being less important
than having beautiful surroundings, nature, or tranquility
along their route. In cases of bad weather, however,
cyclists choose routes that are more utilitarian (37). The
authors of that study argue that this supports the idea of
a positive utility of travel—that is, travel not just serving
as a way to get from one place to another, but also offer-
ing enjoyment along the way.

Lessons for Modeling. The results of our review contain
several key lessons for modeling e-bike route choice in
transport models. Assuming different speeds for bicycle
types as well as person groups and infrastructure appears
to help capture the heterogeneity of bicycle traffic.
Although empirical values of cycle speed are widely
available, more research is needed to determine what
time penalty should be added for different intersection
treatments. This should be informed by research into
microscopic traffic flow. Factors other than travel time,
cost, or physical exertion, such as beauty or tranquility,
should also be included in route choice models for all
types of bicycles. In line with findings from Research
Field 1, e-bikes should be modeled with a lower differ-
ence in utility between mixed and dedicated infrastruc-
ture than c-bikes. Also in line with Research Field 1, we
again were not able to identify research investigating the
impact of topography on e-bike route choice.

Discussion

Lessons About E-Bikes in Transport Models

Through this review of existing research and modeling
practices, we synthesized several recommendations about
how to model e-bike ownership, mode choice, and route
choice in macroscopic transport models.

Modeling ownership differentiated both spatially and
by person group is equally important for e-bike and car
purchase choice models. This is because the utility, own-
ership, and use of e-bikes differ strongly by person group.
The price of e-bikes is a main factor in individuals’ pur-
chasing choices and will affect the number of e-bikes
sold. However, attitudinal and societal factors also play
significant roles in the decision to purchase an e-bike and
it is therefore difficult to predict long-term developments
relating to price or purchasing power. Learning from the
existing research and seeking to fill a gap in current e-
bike modeling practices, we propose a hybrid of a sce-
nario-based- and a dynamic approach for modeling e-
bike ownership. Total e-bike market penetration would
be scenario-based and not an emergent model result. At
the same time, the distribution of e-bikes among person
groups and traffic zones would be dynamic and sensitive
to model inputs such as infrastructure and topography.
Based on our review, we would expect the interdepen-
dence between car and e-bike purchases to be negligible.

Components of generalized costs and their weights
are crucial to both c- and e-bike mode and route choice.
Attributes of choice alternatives and users’ personal
characteristics that are relevant for route or mode choice
of one type of bicycle can be assumed to also be relevant
for the other. The difference in preference for dedicated
infrastructure, slope, or other route attributes between c-
and e-bikes demonstrates that model parameters should
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be estimated separately for c- and e-bikes. Including
route attributes other than simply travel time in the com-
putation of generalized costs and differentiating between
whether a c- or e-bike is used are also relevant to mode
choice, as the generalized costs for an exemplar route are
commonly used in mode choice modeling. Our research
showed that speed should be differentiated by person
group, infrastructure, and bicycle type (4, 30, 47).

Mode choice varies by person group and trip purpose.
This is not unique to e-bikes. However, changes in attitudi-
nal and societal factors over time make it difficult to esti-
mate mode choice parameters that will remain applicable
for long-term forecasts. A fundamental shortcoming of all
empirical travel behavior analyses is that they can only
observe and describe behavioral changes within the societal
context of the past and present. For example, offering a
subsidy for an e-bike purchase might objectively increase
the utility of that mode, however the subjective utility
depends on societal norms and individual attitudes or
needs. If societal norms inhibit people from viewing e-bikes
as an appropriate or desirable mobility solution for their
individual needs, the subjective utility of the mode will be
rather low. Conversely, if norms promote the attractive-
ness of e-bikes as a natural and ubiquitous way of travel-
ing, the uptake in use and the subjective utility of the mode
will be higher. Transport models intend to forecast the
impacts of measures decades into the future, yet it is chal-
lenging to confidently predict the fast-changing societal
norms and attitudes toward e-bikes. Similar to purchase
choice modeling, we therefore see the need for a certain
degree of scenario setting within transport models. Overall
e-bike mode share should be defined manually and, at the
same time, individual mode shares should be computed for
every combination of person group, trip purpose, and
origin–destination pair under the constraint of the overall
mode share. The potential impact of different scenarios for
future e-bike adaption can then be explored while retaining
a degree of mode choice sensitivity to interzonal character-
istics such as topographic obstacles.

Most findings about route choice relate to the range
of different components of generalized costs and their
weighting parameters touched on earlier. Besides travel
time, other route characteristics, such as physical exer-
tion, nature, and tranquility, also affect enjoyment and
should be included in route choice modeling. We did not
identify any evidence that e-bikes call for completely new
model structures. Instead, since the strength of the influ-
ence may vary (as shown, for example, for age or slope),
we would expect model parameters for route choice to
also vary between c- and e-bike models.

Limitations

Several limitations of this review must be considered.
Some sources were relevant to a research field despite not

being identified using the search string established for the
respective field. This could indicate that we missed rele-
vant sources from the literature. Excluding non-English
language sources constitutes another limitation. It is
uncertain to what degree the prominence of Dutch and
Northern European source material might be explained
by the high levels and long traditions of cycling in these
countries or by this language restriction. By excluding
research on scooter-style e-bikes, no studies included in
this review were undertaken in Asia, likely forgoing valu-
able insights from different contexts. Our research does
not address the general challenge of how to model (e-
)bike-sharing, because our search strings favored sources
investigating personal e-bike purchases. Future research
would benefit from exploring what relevance such sharing
systems may have for the propagation of new e-bike user
groups by overcoming the price-based barriers to entry.
Finally, this review focused on trip-based as opposed to
activity-based models or agent-based simulations, which
might provide additional directions for research.

Research Outlook

Since the literature agrees that avoiding physical exertion is
the main motivation for e-bike purchase, we would expect
the influence of topography on e-bike ownership, mode
choice, and route choice to be strong. Despite the large
body of research on how elevation affects mode and route
choice of cycling in general, our structured exploratory lit-
erature review did not identify empirical evidence on this
relationship by focusing on e-bikes. We therefore propose
carrying out research on mode and route choice para-
meters differentiated by c- and e-bikes, including route
attributes other than travel time (such as slope) using exist-
ing methodologies of map-matching GPS trajectories.

Research on the speed of different types of bicycles is
plentiful, but we identified less work covering the differ-
ences in lost time at intersections. Based on the findings
related to acceleration, differences in lost time for e-bikes
compared with c-bikes should be estimated and, if signif-
icantly different, reflected in travel time calculations.

Data availability is a choke point for model calibra-
tion and validation, because appropriate data that distin-
guish between c- and e-bikes are rare. To most
adequately model this growing transport mode, we rec-
ommend differentiating between c- and e-bikes when
collecting data on, for example, travel distance distribu-
tions, vehicle ownership, and traffic counts. We further
call for the development of automated counting sensors
capable of identifying e-bikes to create new opportunities
for large-scale data collection.

Because appropriate data for modeling bicycle traffic
are rare, the tradeoff between falling specification error
and rising data error as a result of increasing the model
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complexity is of particular concern. Differentiating
between different types of bicycles does not improve
model quality unconditionally. Indeed, model quality
might suffer from an increase in model complexity if the
differences in actual bicycle use turn out to be too small,
or the increase in data error resulting from more disag-
gregate data collection turns out to be too large.

In our future work, based on the findings from this
review, we will estimate bicycle mode and route choice
models that distinguish between c- and e-bikes. We will
implement these in selected municipal transport models
to explore the capabilities and usefulness of a modeling
approach that differentiates between c- and e-bikes.

Acknowledgments

We thank the agencies and persons responsible for the exemp-
lary transport models and for providing us with valuable
insights into their models’ specifications and development. The
valuable feedback provided by the anonymous reviewers also

substantially contributed to the final form of this article.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: L. Arning, H. Kaths; data collection: L.
Arning; analysis and interpretation of results: L. Arning; draft
manuscript preparation: L. Arning, C. Silva, H. Kaths. All
authors reviewed the results and approved the final version of
the manuscript.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The authors received no financial support for the research,
authorship, and/or publication of this article.

ORCID iDs

Leonard Arning https://orcid.org/0000-0003-1120-5928
Cat Silva https://orcid.org/0000-0002-8107-0451
Heather Kaths https://orcid.org/0000-0003-2554-8243

References

1. Fishman, E., and C. Cherry. E-Bikes in the Mainstream:

Reviewing a Decade of Research. Transport Reviews, Vol.

36, No. 1, 2016, pp. 72–91.
2. Lin, X., P. Wells, and B. K. Sovacool. Benign Mobility?

Electric Bicycles, Sustainable Transport Consumption

Behaviour and Socio-Technical Transitions in Nanjing,

China. Transportation Research Part A: Policy and Prac-

tice, Vol. 103, 2017, pp. 223–234.
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