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ABSTRACT 
In this paper models are developed, calibrated and evaluated to describe the acceleration and 
deceleration processes of bicyclists in three states; while accelerating from a stop, decelerating to 
a stop and while fluctuating around the desired traveling speed. Such models are necessary to 
reliably simulate the speed profiles of bicyclists in microscopic traffic simulations. To 
accomplish this aim, a sample of 1030 processed trajectories from bicyclists at four intersections 
in Munich, Germany is used to analyze the dynamic characteristics of bicyclists. The average 
crossing speed, the fluctuation in crossing speed as well as the minimum and the maximum 
speeds of uninfluenced bicyclists who cross at a green light are analyzed and correlations 
between these variables are investigated. The acceleration and deceleration profiles of bicyclists 
who stop at a red light, but are uninfluenced by other bicyclists, are used to evaluate four 
acceleration/deceleration models; the constant model, linear decreasing model, two term 
sinusoidal model and polynomial model. Two adaptions of the models are developed and 
evaluated, one to derive acceleration and deceleration as a function of speed rather than time and 
the other to account for the observed fluctuation in bicyclist traveling speed. The polynomial 
model is found to be the most flexible and produces the overall best estimates of the acceleration 
profiles. The constant model was found to best estimate deceleration as well as acceleration and 
deceleration while fluctuation around the desired speed.  
 
Keywords: Microscopic Traffic Simulation, Bicycle Modeling, Bicycle Dynamics   
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INTRODUCTION 
Microscopic simulation of road traffic is frequently used to analyze the efficiency of road traffic 
and to forecast the effects of future transportation measures before implementation. More recently, 
traffic simulation tools have been used to analyze traffic safety. This is done by calculating 
surrogate traffic safety indicators such as Time to Collision (TTC), Post Encroachment Time 
(PET) and Deceleration Rate ensuing from interactions between simulated road users (1). In both 
types of assessment, the soundness of the analysis depends on the validity of the mathematical 
models used to recreate the movements of road users (2). However, the calculation of surrogate 
safety indicators is much more sensitive to the finite accuracy of the road user trajectories than are 
efficiency analyses. Even seemly small divergences between the trajectories followed by road 
users in reality and those of the simulated vehicles, pedestrians and bicyclists can cause significant 
errors in the resulting surrogate safety measures.  
 The desired speed of a motorized road user is typically modeled in a microscopic traffic 
simulation by taking the speed limit of the road segment. The desired speed of a bicyclist in 
contrast does not depend on the speed limit of the roadway, but rather on the personal 
preferences, physical capabilities and tactical maneuvers of the bicyclist, as well as the type and 
quality of the infrastructure, the traffic control and the given traffic situation (3). In the 
microscopic simulation, the speed of all road users is controlled in each time step by an 
acceleration input that is calculated from an acceleration model. The ability of acceleration 
models to deliver accurate speeds depending on the situation and the current state of the bicyclist 
are essential in creating realistic trajectories of bicyclists in microscopic traffic simulations, 
particularly for safety analyses.  
 A number of studies have been carried out to measure the speed of bicyclists as they 
cross signalized intersections, with mean speed estimates ranging between 3.2 m/s and 6.9 m/s 
(4–10). In most cases where acceleration is examined, constant acceleration is assumed and the 
mean acceleration is estimated from video data. Estimates of mean acceleration range between 
0.23 m/s2 and 1.07 m/s2 (6, 9, 11, 12).  
 Although a number of models have been proposed in the literature to describe the 
acceleration process of motorized vehicles, very few examinations of acceleration and 
deceleration profiles of bicyclists were found in the literature. The most common and simplistic 
approach for modeling acceleration is the constant acceleration model a = ta )( , where the 
acceleration at any point during the acceleration process  ta )( is equal to the mean acceleration. 
In many applications, such as in the estimation of crossing times for calculating inter-green times 
at signalized intersections, the constant model provides sufficient level of detail. However, if the 
aim is to model dynamic behavior with enough accuracy to evaluate traffic safety, this approach 
lacks crucial details of the acceleration profile (13, 14). 
 Another approach commonly used for modeling acceleration with more detail than the 
constant model is the linear decreasing acceleration model. In this model, the maximum 
acceleration is exerted when the acceleration maneuver is begun and decreases linearly until the 
desired speed is reached. Such an approach is used in the Necessary Deceleration Model for the 
modeling of bicyclist dynamics by (14), as described in equation 1.  

 

 
t

ss
 = sa

a

o −)(  

 

where:  sa )( = acceleration at speed s             (1) 

os = desired speed 

at = total acceleration time 
1 
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 Haifeng et al. (15) proposed a non-linear decreasing model of acceleration as a function 
of time to model acceleration and deceleration of bicyclists. The maximum acceleration thus 
occurs at 𝑡𝑡 = 0 and rapidly decreases during the acceleration process. Linear and non-linear 
decreasing acceleration models are expected to produce more realisitc results than constant 
acceleration approaches but do not reflect S-shaped acceleration curves that have been observed 
for motorized road users (13). Such curves are characterised by low acceleration at the beginning 
of the acceleration maneuver, maximum acceleration at some mid-point during the maneuver and 
decreasing acceleration until the desired speed is reached.   
 Akçelik & Biggs (13) proposed and tested three models that all reflect the observed S-
shaped speed curves measured by the researchers as well as the constraint of zero acceleration 
and jerk at the beginning and end of the acceleration process; the polynomial model, the two-
term sinusoidal model and the three-term sinusoidal model. For motorized vehicles, the 
polynomial model of acceleration was found to outperform the other models. The equations 
proposed by Akçelik & Biggs (13) are given in equations 2-4. Luo (16) used GPS tracking data 
with a frequency of one observation per second from bicyclists to fit an adapted polynomial 
acceleration model. The model preformance was deemed satisfactory for acceleration but not 
deceleration. 

 
 ra = ta mn

m
2)1()( θθ −      Polynomial Model         (2) 

 
 BCa = ta m )2sin(sin)( πθπθ +     Two-Term Sinusoidal Model        (3) 

 
 PPRa = ta m )3cos2cos5.0cos5.0()( πθπθπθ +−−  Three-Term Sinusoidal Model      (4) 

  
where: )(ta = acceleration at time t  

  ma = maximum acceleration 
  at = total acceleration time 
  PRBCmnr ,,,,,, = model parameters 

  θ = 
at
t

 = time ratio 

 
 In this paper, trajectory data from a sample of 1030 bicyclists who are uninfluenced by 
other bicyclists are used to calibrate and evaluate four of the acceleration models found in the 
literature. A new method for modelling acceleration as a function of speed, which is understood 
in this paper as the momentary speed, or the speed of a given road user at a specific point in time, 
rather than time is defined based on the θ  ratio proposed by Akçelik & Biggs (13). This method 
has two advantages; first the trajectory data can be analysed without prior determination of the 
start time of a given acceleration maneuver and, second, the resulting acceleration profile can be 
used within a microscopic simulation to directly derive an acceleration value based on the given 
speed and maneuver of a bicyclist. In addition, an approach for including the fluctuation in the 
riding speed of bicyclists directly in the acceleration model is developed and evaluated. The 
research methodology is discussed in detail in the following section. The results of the model 
fitting are presented and discussed subsequently. Conclusions and outlooks for future work are 
included at the end of the paper. 
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METHODOLOGY 
 
Data analysis  
Video data analysis allows for the automated extraction of trajectories (position and velocity in 
each video frame) at a high temporal resolution for a large sample of road users. Dynamic 
situational variables, including the position and velocity of other road users and the phase of the 
traffic signal, can be easily extracted or appended.  
 Video data was collected at four intersections in Munich, Germany, for two to four days 
per intersection during the summer months. The study intersections were selected to ensure a 
wide variety in the type of bicycle infrastructure and traffic volume at the intersection. However, 
all intersections are located within the city center of Munich, less than 1.5 km from Marienplatz, 
the central square of Munich, in mixed use areas. The layouts of the four intersections are shown 
in (Figure 1) (frames extracted from the video data). Videos were recorded using a GoPro Hero3 
Black Edition with a full HD resolution (frame size: 1920x1080 pixels) at 25 frames per second. 
A wide angle lens was used to collect trajectory and situation data from a larger area. This, 
however, introduced distortion issues in the automated video analysis that were later rectified. 
Two hours of video data from each intersection were selected from the total video footage for 
trajectory extraction. For all of the intersections, two hour continuous video segments were 
selected during the morning peak hour (from about 7:30 am to 9:30 am), with favorable lighting 
conditions (few shadows) and as little disturbance from wind as possible.  

FIGURE 1  Camera view of the intersections a) Arcisstrasse-Theresienstrasse b) Arnulfstrasse-
Seidlstrasse c) Karlstrasse-Luisenstrasse d) Marsstrasse-Seidlstrasse.  
 
 The open source software Traffic Intelligence (17) was used to extract trajectory data 
from the selected video segments. The software is based on a two-step process in which all 
moving features in the video are tracked in the first step and grouped into road user hypotheses 
based on proximity and similarity in the second step. Both steps are regulated by a number of 
parameters that are calibrated depending on the image quality and the size and speed of the road 
users. A dual calibration method was developed and implemented that categorizes the features 
based on their location in the video frame as probable cars or pedestrians/bicyclists in the first 
step (18). The grouping parameters were independently adjusted to the respective speed and size 
of the specific road users for the second step. Thus the road users were classified as cars, 
bicyclists or pedestrians based on their speed and location.  
 The calibration parameters were intentionally set to be over sensitive and to over-segment 
rather than over-group road users. This ensured that trajectory data was extracted for a 
maximized portion of bicyclists. However, this made it necessary to invest a considerable 
amount of work in manually post-processing the trajectory databases. Erroneous or superfluous 
trajectories were removed, disjointed trajectories belonging to the same road user were combined 
and falsly classified objects were corrected. The distortion that was introduced through the wide 
angle lens was corrected by post-processing the SQLite trajectory databases produced by Traffic 
Intelligence (the current version of Traffic Intelligence includes a method for rectifying video 
data before processing). OpenCV (opencv.org) was used to determine the intrinsic camera 
parameters and the distortion coefficients of the GoPro Hero3 camera with the waterproof 
housing. The position points of the trajectories were remapped based on the resulting matrices 
and the velocites were recalculated in each frame.  
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 The high resolution of the video images as well as the height and angle of the camera 
during recording allowed for the extraction of high quality trajectory data. The relative accuracy 
of the positions recorded in each time step is estimated to be between 5-10 cm. However, 
position values are calculated by Traffic Intelligence for a single road user by finding the mean 
of the positions of all features that are grouped into that road user in each frame. As a result, the 
position data can jump slightly from frame to frame as new features are detected and others are 
lost. The resulting noise in the data becomes more pronounced as the position values are 
differentiated once to get velocities and twice to obtain accelerations. In order to reduce this 
effect, the data was aggregated from a frequency of 25 observations per second to 5 observations 
per second for the velocity values and 2.5 observation per second for the acceleration values. At 
both differentiation steps, the data was filtered using the Savitzky-Golay method (19) with the 
window size of 15 and an order of two. This aggregation and filtering method proved to produce 
valid distance-time, speed-distance and acceleration-distance plots of the road user trajectories 
when compared to manually calculated values.  
 The City of Munich provided data from the traffic signals at three of the four research 
intersections for the data collection period. Each of these signals is traffic actuated and 
information regarding the time of each phase change is automatically catalouged (1 second 
precision). Intersection 4 is controlled by a fixed-time signal control and therefore the phase 
change time data is not recorded. This information was extracted manually from the video data 
with slightly less precision.   
 The resulting trajectory data was filtered to include only uninfluenced bicyclists. The 
behavior of a bicyclist can be hindered at urban intersection by two main factors; the presence 
and actions of other road users and the traffic signal control. In order to isolate the uninfluenced 
(or desired) behavior of the bicyclist as well as the non-confounded response to both the signal 
control and the actions of other road users, the bicyclists were divided into four groups, as shown 
in (Table 1). Bicyclists in Group A arrive at the stop line of the intersection while the traffic 
signal is green and have more than a two second time gap to any leading bicyclists 
(uninfluenced). Group B bicyclists arrive while the traffic signal is red and there are no other 
bicyclists stopped at the intersection (traffic signal influence).  

 
TABLE 1  Classification of Bicyclist Groups 

 
 The qualitatively verified trajectory data from the 1030 bicyclists in Group A and Group 
B are used to investigate the crossing speed, acceleration and deceleration of bicyclists at 
signalized intersections. The average crossing speed, the variation in crossing speed as well as 
the minimum and the maximum speeds of bicyclists in Group A are analyzed and correlations 
between the analysis variables are investigated. The acceleration, deceleration and speed 
observations from the trajectories of bicyclists in Group B are used to examine the acceleration 
models presented in the introduction.  
 
Modeling acceleration and deceleration 
Acceleration is typically modeled as a function of time. However, in reality, a bicyclist does not 
accelerate depending upon time, but rather depending upon his or her given speed, desired speed 
and the situational restraints. While processing the data, the acceleration and speed can be 
directly extracted from the trajectory. The identification of a starting time for the maneuver, on 
the other hand, is more challenging and in some situations not possible. Similarly, for the 
purpose of traffic simulation, modeling acceleration as a function of speed is more practical 
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because time, as measured from the start of an acceleration process, is not readily available from 
the traffic simulation. Speed, however, is available in each simulation time step. Indeed, 
simulation software such as VISSIM allow users to set acceleration-speed curves, which are used 
to define the acceleration based on speed (20). To account for this aspect of traffic simulation, a 
new sθ ratio is proposed in equation 5 based on the θ concept introduced by (13). 
 

  
if

i
s ss

ss
−
−

=θ  where: sθ = speed ratio                    (5) 
 s  = speed 
 is = initial speed 

fs = final speed
1 

 A similar parameter ρ  is used by Akçelik & Biggs (13) to evaluate the acceleration 
models developed in that paper. This parameter is adapted and used here to develop the 
acceleration curves. However, given the proposed definition of sθ  in equation 5, an acceleration 
of zero at  0=sθ  would lead to a situation in which a bicyclist would never accelerate from the 
initial speed of 0=is . To resolve this issue, equations with an sθ -intercept at 0=sθ must be 

altered to ensure an )( sa θ -intercept that is greater than zero. This is done by adding a shifted 2
1

sθ
function with an sθ -intercept at 1=sθ  and an adjustable )( sa θ -intercept that can be calibrated to 
fit the observed data.  
 The four acceleration models shown in equations 6-9 were assessed using the observed 
trajectory data. Initial testing of the three term sinusoidal model proved it to be similar to, but 
less accurate and more complex, than the two term sinusoidal. For this reason it was excluded 
from further examination. Similarly, initial testing of a new model, the square root model, 
indicated that this approach was not suitable for modeling acceleration or deceleration and was 
excluded from further analysis.  

 
aa s =)(θ        Constant Model         (6) 
 

smms aaa θθ −=)(       Linear Decreasing Model        (7) 
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θθθ    Polynomial Model         (8) 

 
c

aBCa = a
s

ssms )1()2sin(sin)( 2 +
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θ

πθπθθ   Two Term Sinusoidal Model        (9) 

 
 where: )( sa θ = acceleration at speed ratio vθ   
  a = mean acceleration 

ma = maximum acceleration 
  sθ  = speed ratio (equation 5) 
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  BCcamnr ,,,,,, = model parameters (
c
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+
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State definition 
Two approaches are developed and evaluated using the observed trajectory data; a simplified 
approach that does not include fluctuation around the desired traveling speed and an oscillating 
approach that includes this fluctuation. While both approaches use the ratio sθ  introduced in 
equation 5, the definition of is and fs differ in the two approaches. 
 
Simplified approach 
In the simplified approach, bicyclists accelerate with a given acceleration profile until they reach 
their desired crossing speed ds . They continue at this speed without fluctuation until it becomes 
necessary to stop or slow down. In this approach, bicyclists are in one of three states: 

 
State 1: Acceleration:      di ss <  and  df ss =  
State 2: Deceleration:     0>is and 0=fs   
State 3: Traveling steadily at desired speed:   dfi sss ==  

 
Oscillating approach 
In reality, bicyclists are unable to maintain a constant speed while riding (11). An approach for 
incorporating this fluctuation into the acceleration model and hence into traffic simulations, is 
given using the following four states. The parameters dsmin and dsmax  represent the lower and 
upper speed threshold observed in the trajectories of a bicyclist riding normally. These values are 
subsequently used to calculate sθ : 

 
State 1: Acceleration from a stop (or a low speed):   di ss min<  and df ss max=  
State 2: Deceleration to a stop (or a low speed):  fi ss >  and df ss min<  
State 3: Acceleration as part of normal speed fluctuation: di ss min≥  and dss

f
max=  

State 4: Deceleration as part of normal speed fluctuation: di ss max≤  and dss
f

min=  
 
Model calibration and evaluation 
The acceleration data derived from the trajectories was plotted using the newly defined sθ , both 
using the simplified and oscillating approach. To produce the observation points, the acceleration 
data from all bicyclists with equal crossing speeds ds  when rounded to the nearest 1 m/s were 
aggregated. The sθ values were rounded to the nearest 0.05 and aggregated to build large groups 
of observations. The plotted points in (Figure 2) indicate the median of the observed 
accelerations for each aggregated sθ  group. The parameters were calibrated to an accuracy of 0.1 
using the average root mean square error (RMSE) as a measure of good fit. 
 
RESULTS 
 
Speed analysis 
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The trajectories of bicyclists riding straight across the intersection on a bicycle lane in the 
intended direction of travel were taken as the reference group for the crossing speed analysis 
(Group A). The dynamic characteristics of this group are summarized in (Table 2). The speed of 
the observed cyclists is found to vary as the cyclist crosses the intersection, which supports the 
hypothesis that bicyclists do not normally maintain a constant speed as they ride (11).  

In order to incorporate the speed fluctuation into the acceleration model, it is necessary to 
investigate the range of traveling speeds observed for bicyclists riding unhindered though the 
intersection. As shown in (Table 2), an average fluctuation of 1.82 m/s was observed. However, 
when taking the average maximum and minimum speeds of the bicyclists in Group A into 
account, 4.20 m/s and 6.02 m/s respectively, the range of normal riding velocities can be 
approximated as dd svs 15.18.0 << . It is assumed that all bicyclists in Group A and Group B are 
part of the same population of bicyclists because arrival at a red light is distributed randomly 
amongst bicyclists. The results in (Table 2) are therefore used as a reference for the desired 
riding speed of all bicyclists in the following analyses.  
 
TABLE 2  Dynamic Characteristics of Bicyclists in Group A 
 
Acceleration  
The trajectory data from Group B was used to test and calibrate the acceleration and deceleration 
models for State 1 and State 2, for both the simplified and the oscillating method. Data from the 
bicycles at all four research intersections was aggregated to attain a suitably large dataset. In 
order to estimate the desired crossing speed ds  of each bicyclist, an exit line was drawn between 
the two edges of the sidewalk pavement on the opposite side of the intersecting road. The 
distance between the stop line and the exit line ranged from 13m to 40m, depending on the 
intersection and approach. According to (11), the majority of bicyclists complete an acceleration 
process in less than 11m. It was therefore assumed that the observed bicyclists reached their 
desired crossing speed before crossing the exit line and ds  was defined as the mean speed of the 
bicyclist after crossing this line. It should be noted that the desired crossing speed is the desired 
speed while crossing an intersection and the desired speed on segments between intersections 
maybe greater or less.  
 The calculated sθ  and corresponding acceleration values of bicyclists accelerating from a 
stop are shown in (Figure 2). As the oscillating approach was found to produce better estimations 
of the observed acceleration data, only results from this approach are shown below. The resulting 
RMSE values for all the tested models are included in (Table 3).  
 As seen in (Figure 2), the maximum acceleration of the observed trajectories increases 
with the desired speed ds . The calibrated parameters for the models for each desired speed group 
are included in the top left corner of the chart. The small range of the parameters r and C, which 
control the amplitude of the polynomial and two term sinusoidal models, indicates that the 
differences between the curves of the different desired speed groups is largely accounted for by 
the different ma  values associated with the desired speed group.  
 The maximum acceleration is reached in all cases at 4.0≅sθ . In theory, )( sa θ should 
equal 0 at 1=sθ . However, the observed data tends towards zero but does not reach zero for any 
of the desired speed groups. This is because ds  is defined as the average observed speed of a 
specific bicyclist. The speed range on the other hand is defined for all bicyclist as 
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dd svs 15.18.0 << , which reflects the average values. Per definition, many observed trajectories 
include maximum speeds larger than this value. The acceleration values measured at these high 
speeds, however ranged between zero and 0.2 m/s, which is consistent with the acceleration 
values observed for bicyclists fluctuating during normal riding (Figure 4).  
 
FIGURE 2  Acceleration profiles of bicycles in State 1: acceleration from a stop using the oscillating 
approach a,b,c) clustered according to the desired speed 𝒔𝒔𝒅𝒅 and d) aggregated.  
 
Deceleration 
The simplified and the oscillating approach are identical when considering the deceleration of 
bicyclists in Group B because all of the bicyclists have a ds  value of 0, or in other words 
decelerate to a complete stop. The sθ and deceleration values of bicyclists in State 2 for three 
desired speed groups (a-c) and aggregated (d) are shown in (Figure 3).  
 The portion of trajectories from bicyclists in Group B that included the deceleration 
phase was relatively small compared to the acceleration phase. This is because a number of the 
approaches were not clearly visible over a sufficiently long segment in the video data. As a 
result, the deceleration profiles are noisier than the acceleration profiles. The evaluation of the 
different models suggests that the best fit to the observed data is achieved by the constant model. 
Although a slight curve with a maximum deceleration occurring at about 3.0=sθ  can be 
observed in three of the plotted profiles, the noise in the data could have prevented an accurate 
fitting of the other tested models. The best approximation of the maximum deceleration was 
attained by the two term sinusoidal modal, but these results were inconsistent between the ds  
groups. 
 
FIGURE 3  Deceleration profiles of bicycles in State 2: deceleration to a stop a,b,c) clustered 
according to the desired speed 𝒔𝒔𝒅𝒅 and d) aggregated. 
 
Speed fluctuation 
Data from bicyclists who passed unhindered through a green light (Group A) were used to 
investigate States 3 and State 4, accelerating and decelerating respectively during normal riding 
as a result of fluctuating traveling speed. The plotted acceleration and deceleration data from the 
observed trajectories and the tested mathematical models are shown in (Figure 4). Only the 
aggregated curves of all bicyclists in Group A are shown because no discernable difference 
based on the desired speed ds  was observed. The resulting curves suggest that acceleration and 
deceleration values that lead to the fluctuation in riding speed are uniform across sθ  values and 
tend to be around ±0.2 m/s2. 
FIGURE 4  Acceleration and deceleration profiles of bicycles in a) State 3 and b) State 4: 
accelerating and decelerating as part of normal speed fluctuation, respectively. 

 
Evaluation 
The average root mean square error (RMSE) and the percentage error in the predicted maximum 
acceleration attained using the simplified and the oscillating approaches are given in (Table 3). 
The RSME values given in the table are the average RMSE value for all the clustered desired 
speed groups (4.0-6.0 m/s) for State 1: acceleration from stop and State 2: decelerating to a stop. 
For State 3 and 4: accelerating and decelerating while fluctuating around the desired speed, 
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respectively, only the RMSE value for the aggregated case is given as no difference in profiles of 
the clustered desired speed groups could be discerned. In each of the states examined, the lowest 
RMSE value, or the best model fit, as well as the lowest percentage error in the maximum speed 
estimation are bolded. The following conclusions were reached for each of the investigated 
models: 

• The constant acceleration model does not produce good approximations of the 
acceleration profiles of bicyclists accelerating from a stop or a very low speed (State 1). This 
model, however, proved to best match the deceleration profiles of bicyclists decelerating to a 
stop or very low speed (State 2). This was also the case for bicyclists fluctuating around the 
desired traveling speed (State 3 and State 4). While this model by definition meets the 
requirement that 0)( ≠sa θ  when 0=sθ , it does not meet the requirement that 0)( =sa θ  when 

1=sθ . This will lead to discontinuous jumps between acceleration and deceleration, which does 
not reflect the smooth transitions observed in reality. Another disadvantage of this model is the 
inherent poor estimation of maximum acceleration or deceleration, which can be vital in some 
cases, such as the investigation of surrogate safety indicators.  

• The linear decreasing model was found to produce very poor approximations of 
the acceleration and deceleration profiles of bicyclists in State 1 and State 2. The approximation 
of the profiles of bicyclists in State 3 and State 4 were better, but were still outperformed by the 
constant model. 

• The polynomial model is found to be the most adaptable of the models tested and 
was found to deliver the best approximation of the observed trajectory data in State 1 and State 3. 
The RMSE values for the other cases were very near to the constant model. This model, 
however, was found to consistently underestimate the maximum acceleration and deceleration 
values. Another disadvantage of this model is the comparatively large number of parameters that 
must be calibrated to produce precise results.  

• The two term sinusoidal model produces good estimations of the acceleration 
profiles in all the examined states. The attained maximum acceleration and deceleration were 
also very consistent when compared to the other models. Because this model has one less 
parameter than the polynomial model, it is slightly easier to calibrate.   
 
TABLE 3  Root Square Mean Error (RMSE) and the Percent Error in the Maximum 
Acceleration/Deceleration of the Tested Models  
 
The slightly lower RMSE values derived using the oscillating approach suggest that the observed 
acceleration data can be better fit if the speed fluctuation around the average riding speed are 
taken into account. The method introduced in this paper provides a valid possibility for including 
this fluctuation in the acceleration and deceleration model. There are however other methods that 
could be used to define sθ , such as the usage of the maximum observed speed for ds  instead of 
the average speed. 
 
CONCLUSIONS AND OUTLOOK 
In this paper the acceleration-speed profiles from a sample of 1030 bicyclists who were 
uninfluenced by other bicyclists are used to evaluate four acceleration and deceleration models; 
constant, linear decreasing, two term sinusoidal and polynomial. The bicyclists are separated into 
two groups, one group that rode unhindered through an intersection at a green light, and another 
that stopped at a red light, A new ratio sθ  is defined and implemented based on the θ as a time 
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ratio concept introduced by Akçelik & Biggs (13). The new concept uses the acceleration state as 
well as the speed rather than the start time and duration of a process as a basis for deriving 
acceleration. This allows for the direct analysis of the trajectory data without first needing to 
extract the start and end time of an acceleration or deceleration process. A further benefit of this 
definition is that the speed is readily available in microscopic simulations, making direct 
implementation of the the adapted models possible.  
 The evaluation of the four models indicates that the polynomial model provides the most 
flexibility and obtains the most consistently low RMSE values for all the acceleration states. The 
maximum acceleration and deceleration values were, however, underestimated by this model. 
The constant model slightly outperforms the polynomial model in State 2: deceleration to a stop 
and in States 3 and 4, accelerating and decelerating as part of normal speed fluctuation, 
respectively. The two term sinusoidal model produces good estimations of the acceleration and 
deceleration profiles while also providing accurate estimates of the maximum acceleration and 
deceleration. The selection between these three acceleration models therefore depends on the 
application and whether an overall good fit, the maximum acceleration or deceleration or the 
ease of implementation are priority. The linear decreasing model was found to produce the 
poorest estimations of the acceleration profiles.  
 Finally, a method for including the fluctuation in riding speed directly in the acceleration 
model is developed. A comparison between the RMSE values derived using the simplified 
approach, which does not include speed fluctuation, and the oscillating approach, which does 
include speed fluctuations indicates that oscillating approach better fits the observed acceleration 
data. The simplified approach, however, is less complicated to implement in microscopic 
simulations and still adequately matches the observed acceleration and deceleration profiles.  
 The results of this paper can be used by traffic engineers and researchers to more 
accuratly model the acceleration and deceleration profiles of bicyclists as they cross signalized 
intersections. This will enable a more realistic simulation of bicycle traffic, which will in turn 
increase the accuracy and reliability of efficiency and safety analyses carried out using simulated 
or modelled traffic scenarios.  
 In future work, the developed acceleration and deceleration curves in combination with 
the regression model for estimating the desired speed based on the driving maneuver, direction 
of travel and type of infrastructure can be implemented in microscopic traffic simulation 
software to model the dynamic characteristics of bicyclists with increased detail. Subsequent 
analyses of traffic efficiency and safety in urban areas that include significant levels of bicycle 
traffic will produce more reliable results.    
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TABLE 1  Classification of Bicyclist Groups 
 

 Interference from other bicyclists 
 (following 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔 < 2 𝑠𝑠) 

No Yes 

Interference from signal control  
(red signal upon approach) 

No Group A (N=704) Not analyzed 

Yes Group B (N=326) Not analyzed 
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TABLE 2  Dynamic Characteristics of Bicyclists in Group A 
 

Group A ( st gap 2>  and Signal 
Phase: Green, N=466) 

Mean Std. 
Correlation Coefficient R2 (p value) 

Speed range 
(m/s) 

Min. speed 
(m/s) 

Max. speed 
(m/s) 

Crossing speed (m/s) 5.23 1.25 -0.128 
(p=0.006) 

Direct 
correlation 

Direct 
correlation 

Crossing speed range (m/s) 1.82 1.11 na -0.535 
(p=0.000) 

0.250 
(p=0.000) 

Minimum speed (m/s)  4.20 1.48 na na 0.684 
(p=0.000) 

Maximum speed (m/s) 6.02 1.29 na na na 

na = not applicable  
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TABLE 5  Root Square Mean Error (RMSE) and the Percent Error in the Maximum 
Acceleration/Deceleration of the Tested Models 
 

State 
Constant Linear 

Decreasing Polynomial Two Term Sinusoidal 

RMSE %𝒆𝒆𝒂𝒂𝒎𝒎 RMSE RMSE %𝒆𝒆𝒂𝒂𝒎𝒎 RMSE %𝒆𝒆𝒂𝒂𝒎𝒎 

Si
m

pl
ifi

ed
 

ap
pr

oa
ch

 

1 0.039 -33% 0.092 0.010 -9% 0.009 4% 

2 0.022 -36% 0.079 0.026 -26% 0.032 -15% 

O
sc

ill
at

in
g 

ap
pr

oa
ch

 1 0.043 -42% 0.053 0.005 -6% 0.006 -8% 

2 0.022 -36% 0.079 0.026 -26% 0.032 -15% 

3 0.003 -34% 0.006 0.004 -4% 0.003 -4% 

4 0.001 -22% 0.010 0.005 -15% 0.005 -16% 
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FIGURE 6  Camera view of the intersections a) Arcisstrasse-Theresienstrasse b) 
Arnulfstrasse-Seidlstrasse c) Karlstrasse-Luisenstrasse d) Marsstrasse-Seidlstrasse. 
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FIGURE 2  Acceleration profiles of bicycles in State 1: acceleration from a stop using the oscillating 
approach a,b,c) clustered according to the desired speed 𝒔𝒔𝒅𝒅 and d) aggregated. 
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FIGURE 3  Deceleration profiles of bicycles in State 2: deceleration to a stop a,b,c) 
clustered according to the desired speed 𝒔𝒔𝒅𝒅 and d) aggregated. 
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FIGURE 4  Acceleration and deceleration profiles of bicycles in a) State 3 and b) State 4: 
accelerating and decelerating as part of normal speed fluctuation, respectively. 
 


